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20. The 5cattering of acousticilwwaves from fluid-load elastic spheres with

10 < ka < 100 (where k is the wavenumber of the acoustic wave in the liquid

and a the radius of the sphere) is studied. The main emphasis is on

understanding the scattered pressure near backscattering. By carrying out a

Sommerfeld-Watson Transformation (SWT) it is ahown that this pressure includes

contributions from specular reflection, transmitted bulk waves, and surface

" waves. It is shown experimentally that surface wave contributions to near

backscattering display a J Bessel function angular dependence characteristic

.- of weak axial focusing along the backscattered direction; i.e., glory

scattering. This focusing is modeled by alternate methods which agree and -3

whi-e- complement each other. One method allows a simple picture of the glory

phenomena while the others (which includes the SWT) are more mathematically

rigorous. The absolute value of individual Rayleigh and whispering gallery

surface wave contrib tions is found by this modeling to be equal to A J%(kbf)

* '~~-Ea-~-t-#hli-ic x ýý' Y* is the angle relative to scattering and b and A

are parameters Vhich depend on the, surface wave contribution being examined and

are determined by the models.(AThe theoretical results or.-ýA--e-Y_ are

tested experimentally using the Rayleigh surface wave contribution to

scattering from a tungsten carbide sphere. The SWT results are also used to

find the far field backscattering pressure as a function of ka. These results

kn-turn are used to better understand and interpret the recently developed

0""Resonance Scattering Theory (RST) as applied to acoustical scattering. It is

shown that surface wave contributions to backscattering may be summed in a way

analogous to the frequency response of a Fabry-Perot resonator. J.
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ACOUSTICAL SCATTENI FROM A0 ELASTIC SPHERE IN WATER: SURFACE

WAVE GLORY, RESONANCES, AND THE SOM•R'ELD-VATSON

. TRANSORMATION FOR AMPLITUDES

Abstract

by Kevin Lee Wiiamm, Ph.D.
W-shington State University, August L985

Chair: Philip L. NMarston

The scattering of acoustical waves from fluid-load elastic spheres

with 10 < ka < 100 (where k is the wavenumber of the acoustic wave in the

liquid and a the radius of the sphere) is studied. The main emphasis is on

understanding the scattered pressure near backscattering. By carrying out a

Sommerfeld-Watson Transformation (SWT) it is shown that this pressure includes

"contributions from specular reflection, transmitted bulk waves, and surface

waves. It is shown experimentally that surface wave contributions to near

. backscattering display a J Bessel function angular dependence

characteristic of weak axial focusing along the backscattered direction; i.e.,

glory scattering. This focusing is modeled by alternate methodb which agree

and which complement each other. One method allows a simple picture of the

glory phenomena while the others (which includes the SWT) are more

mathematically rigorous. The absolute value of individual Rayleigh and

whispering gallery surface wave contributions is found by this modeling to be

"equal to A J (kby). In this expression y is the angle relative to
0

backscattering and b and A are parameters which depend on the surface wave

contribution being examined and are determined by the models. The theoretical

results for A and b are tested experimentally using the Rayleigh surface

"wave contribution to scattering from a tungsten carbide sphere. The SWT

results are also used to find the far field backscattering pressure as a
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- ,

v

function of ka. These results in turn are used to better understand and

interpret the recently developed Resonance Scattering Theory (RST) as applied

to acoustical scattering. It is shown that surface wave contributions to

backscattering may be summed in a way analogous to the frequency response of a

Fabry-Perot resonator.
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1.1 Overview

Many times in physics, results derived from investigating "canonical

problems" are important In understanding more difficult situations. A

particular example of this is the scattering of waves incident on a sphere.

"This problem is of interest in such areas as electromagnetics, acoustics,

geophysics, and particle physics. Because of this, it has been the subject of

much analysis.1 As early as 1863 Clebsh addressed the problem of acoustical

wave scattering from a rigid sphere. In the ensuing years from 1863 to World

War II many people examined various versions of the problem in many different

fields. Reference I is a survey of many of these analyses up to 1941.

Formal solutions to the various problems, in terms of an infinite Partial Wave-

Series (PWS) of spherical functions, are obtainable by using the separation of

v'ariables technique in solving the differential equations. In many cases the

PWS results give little physical insight into the problem at hand. This is

particularly true if the sphere is much larger than the wavelength of the

plane wave. This is equivalent to saying the dimensionaless parameter ka of

the sphere is much larger than one where k is the wavenumber of the plane

wave and a is the sphere's radius. Much of the work even to this day

revolves around obtaining a better understanding of observable physical

phenomena by applying various mathematical techniques to the PWS results when

ka >> 1. From this type of analysis one can obtain results equivalent to

those of less rigorous methods such as geometrical optics. For the problem we

shall study (see below) we will first use the less rigorous methods directly

since they have less of a tendency to mask the physics of the situation. We

"will then attack the problem by beginning with the PWS results which are also

given below. Finally we will examine the interpretation of a recently

developed theory which uses the PWS directly. It the paragraphs below we

-I%
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shall specify the problem we will examine, give a short summary of its PWS

solution and discuss work which had been carried out up till 1983 which was

important to analysis in this dissertation.

The problem we wish to study is the scattering of an acoustical plane

wave incident from an nonviscous fluid onto an isotropic elastic sphere. We

are most interested in the total pressure external to the sphere in the range

10 < ka < 100. The PWS solution for this pressure was found first by Faran in

1951.' Related work up to that point is summarized in Reference 2.

To solve the problem, Faran wrote the vector displacement u in the

elastic solid in terms of a scalar potential ý and a vector potential A.

In terms of these potentials the vector displacement u is given by

u -Vto + 7xA (x)

where 7 is the del operator. The potentials in turn must satisfy the

equations

7 2, 1 a 2 (2)2 2

L

2-P7 x 7 x( 3 )2 at2

S

where c and c5  are the longitudinal and shear elastic wave speed

respectively. Assuming a plane wave incident as shown in Fig. 1 symmetry

considerations allow one to show that there will only be an A component to

A and that ' and A will have no 0 dependence. Therefore solving Eq.

(2) and (3) by the method of separation of variables one finds that ' and

A may both be written as an infinite PWS with
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*" Ax

9*

Az

The r, 9, coocdilnace system shown above wac 144ed in ,Yrri~ng the

Partial. wave series (?WS) so.lution CO Plane wave scattering from an
elastic sphere. 7h* Plant wave . Assusmed to be trave•eng in t.he +-z

direction.

A' 
Fig. I.
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,(rea - an(k~a) P (cos6e-e'•t (4)

n0

nMO
Al(r,e,t) = h jn(ks a) P1 (cose)e-i~t (5)

where w is the angular frequency of the incident plane wave, a and b
ti

are unknown constants, ju is the spherical Bessel function, kL and k are

the longitudinal and shear wavenumbers, a is the radius of the sphere, and
1.

P and P are the Legendre and associated Legendre functions respectively.

The pressure in the liquid satisfies the equation

V2p __(62 1

where c is the acoustic wave speed for the liquid. The vector displacement

in the liquid is given by

U 1 (7)- - 2

where 0 is the density of the liquid and w is the angular frequency of the

acoustic wave in the liquid. The total pressure p is given by the incident

pressure pl of the plane wave plus the scattered pressure p; i.e.,

P " Pi + pS. Assuming an unit amplitude incident plane wave p can be

written as

0o

Pi(ret) E [ (i)n(2n+l)j n(kr)Pn(cO)e-i~ t (8)

whereas the scattered pressure is a combination of outgoing spherical Vaves

and i1 given by

p. (ret) - c h(1)(kr)P (Cose)e- it (9)
Sn0 n
"•-".
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In Eq. (8) and (9) k is the wavenumber for the pressure waves in the liquid.

In Eq. (9) h (1) is the spherical Hankel of the first kind and the cn are

unknown constants.

Now to find the an, bn, and cn we must apply the appropriate

boundary conditions. The boundary conditions are; the displacement ur (the

radial component of U) is continuous across the boundary, the pressure in the

liquid must eiial the normal component of the stress in the solid sphere at

the boundary, and the tangential (shear) stress components for the solid must

vanish at the boundary. The mathematical form of these boundary conditions

may be found in Ref. 2. We shall not carry out Faran's analysis to find the

an, bn, and cn. We simply quote the result for the total pressure external

to the sphere in a form appropriate for our purposes. The total pressure is

B (ka))
p(r,e) - • in(2n+l)[j n(kr) +' h--- n (kr)]Pn(ccse) (10)

In=e qaio bve nd are 3 k) €i

n n

given in Appendix A of Chapter 3. In Eq. (10) the time dependence e is

not shown explicitly.

In 1962 Robert Hickling, using Faran's results, published an article

in which he carried out a computer analysis of the far field

backscattered pressure from elastic spheres made of several different

4materials. The spheres had ka in the range 0 < ka < 60. The case of

backscattering (i.e., e -7r) is particularly important in such areas as sonar

and non-destructive testing. The analysis of this dissertation emphasizes the

development of an understanding of the scattering pressure near e r.

Rickling obtained the steady state backscattering pressure as a

function of the dimensionaless parameter ka of the spheres. A diagram
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equivalent to his steady state results for Armico iron ,s given in Fig. 2a.
-4

He used these steady state results along with Fourier transform techniques to

determine the backscattering echo from an Armico iron sphere which was

subjected to a tone burst. Redrawn in Fig. 2b is Rickling's result for the

case of a 5 cycle pulse incident on an Armico iron sphere with ka - 24.5. The

figure reveals a decaying pulse train. About a year before Hickling's

analysis Hampton and McKinney had published an experimental paper in which,

among other things, they had subjected an aluminum sphere to a short acoustic

pulse of the form used by Hickling in his computer analysis. A pulse train

type echo was clearly evident.5 Also evident after reading both articles is

the fact that much of the phenomena seen were incompletely understood. In

"fact the PWS solution is not a particularly well equipped vehicle through

". which to understand the physical origins of the echoes. We turn now to work

that allows an alternate avenue through which to understand the backscattered

pressure from the alastic sphere. It should be reaffirmed that we are

examining work which was relevant to the methods used in the current

dissertation and make no claim that the present summary is exhaustive.

In the middle 1950's Joseph Keller and associates developed a new

theory of scattering6,7 which they called the Geometrical Theory of

Diffraction (GTD). The theory is based on the postulate that fields propagate

along rays as in geometrical acoustics, but introduces diffracted waves. Like

geometrical acoustics it is applicable to scattering from a sphere with

". ka >> 1. An article by Levy and Keller in 1959 is of particular interest

since it applied C7D to acoustical scattering from impenetrable spheres and

"cylinders. For the problems discussed in the 1959 paper the diffracted rays

propagated in part along the surface of the scattering object and were

therefore called surface waves. The GTD surface wave picture is developed in

-4

-4-

_ 0. . . ...-.. .. . . . . , .. . .- - - - - . - - - - " ' "........ . . . . . . . ..- . - - - .- - - .,, ' -. ,
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2.0-

0.5-

0.010 20 30 40 s0
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Calcu.lations of Choe backscactared pressure from an A=J.co iron

sphiere: a) Tb.h backsc~a:aring form function as a function of 'ca.

This figuzre was ca.lcuJcacd, usiang the program CZ7RMR given in th'e

append-I , b) gsaig the resu.ls used to generate figure 7±;. 2a and

Fourier transformacion techniques, Eick±.ng obcained the

"backse.ac.•erng response to a 3 cc•.. cone bmtsc shown here. The

"ihorizontal. time s•a•. is referenced to he hocener of a pulse

crave.lng in water from (r 9 (r 0 0) (r - , - ,r) and

Cl.h nondimens.onal. ciaoe uni. • - ct/a.

Fig. 2.
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Levy's paper by first using ideas similar to those of geometrical acoustics.

A typical trajectory for a diffracted ray in going from a source point Q to

%' a receiver P is shown in Ft.g. 3. The surface ray is launched at the point

Q1 whose location can be determined by phase matching conditions (cf. Chapter

2). The surface wave reradiates energy into the fluid continuously as it

travels around the sphere (indicated by the dotted rays in Fig. 3). At the

point• 2 energy is reradiated into the liquid in the direction of the

receiver P. The surfaca wave picture developed by use of geometrical

arguments was recalculated more rigorously later in Levy's paper by using the

Sommerfeld-Watson transformation (SWT).

The SWT consists of rewriting the PWS solution of the problem under

study in terms of a contour integral. The contour is then deformed to

surround poles in the complex plane which eventually lead to surface wave

contributions. The contour can be also be separated and further deformed to

* pass through saddle points of the complex integral. A saddle point analysis

"then gives contributions to scattering which are familiar from geometrical

acoustics; for example, specular reflection. The SWT was first used by Watson

and then further developed by many others.I

In Levy's paper the SWT analysis occupies only a few pages and

contains little detail since it was not the primary goal of the paper to

understand all of the many effects which can be seen. In contrast to this
8

Nussenzveig, in a 1965 paper, embarked on a very detailed analysis of scalar

plane wave scattering from a sphere using boundary conditions appropriate for

an acoustically soft sphere. Re used a modified SWT analysis to investigate

the PWS solution for a wavefunction which could be interpreted as either the

velocity potential for an acoustically soft sphere or as the Schrodinger wave

function for a hard-core potential. At the time of his paper the ST was

L '
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"0

A ctpical trajeccory for a diffracted ray of the GTD in going from

the sender 0 to receiver ?. A surface jave is launched at point

•0. As indicated by the dotted Lines the surface wave concinuously

"reradiates energy into the fluid. At the poinc Q2  energy is

radiated in the direction of ?. As drawn here the ray is similar to

ones used later in this dissertation. In Levy's paper rays were

assumed to be launched onto the sphere Canenucially.

iFig. 3.



being used in particle physics in connection with Reggi's work on complex

angular momentum.8

Later, in 1969, Nussenzveig authored two papers which treated a sphere

with boundary conditions appropriate for the acoustical problem of a liquid

sphere embedded in another liquid. The second of these papers was concerned

partly with understanding a scattering effect known as glory. The term glory

refers to a weak axial focusing of scattered waves along either the forward or

backward scattering directions. More will be said about glory scattering

later in this introduction.

The results of Nussenzveig's papers included surface wave

contributions in agreement with the ideas of the G11. One obvious next step

in studying scattering from a sphere would seem to be a generalization of

Nussenzveig's papers to the case studied by Faran; i.e., an isotropic elastic

sphere embedded in a nonviscous liquid. One could foresee a possible

'5
profitable interaction between experimental results such as Hampton's and

theoretical results of the SWT. This dissertation, in fact, represents a

partial fulfillment of this next step.

It may at first seem curious that the generalization and interaction

between experiment and theory described above did not happen before now.

However, part of the reason for the delay can be found by realizing that

there is another similar problem which is in some ways easier to study. That

is the problem of plane wave scattering from an isotropic elastic cylinder in

a liquid. In the same time frame as the studies discussed above, other

investigators were developing equivalent results for cylinders. 1 2 ' 13  Indeed,

in 1968 (a year before Nussenzveig's study of the glory in Ref. 10) Doolittle,

Uberall, and Ugincius, published a SWT analysis of scattering from an elastic

cylinder.13 Some of the work (by them as well as other researchers) leading
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up to this analysis is referenced in the introduction of Ref. 1.. Elastic

cylinders with ka < 100 (where a is now the radius of the cylinder) became

the objects of study through which people increased their understanding of the

surface waves of the SWT (at least in acoustics research). Thus the delay in

obtaining SWT results for an elastic sphere. Doolittle ec al. separated the

surface waves they found on cylinders into two groups; "Franz-like" waves

whose energy resided mostly in the liquid around the cylinder and which were

present in the rigid and soft cylinder cases, 'Rayleigh-like" waves whose

energy resided mainly in the elastic cylinder. Investigations carried out

over the next five years showed that the "Rayleigh-like" surface waves could

be further split by identifying one Rayleigh wave whose phase velocity went

asymptotically as ka t to the phase velocity of the Rayleigh surface wave

known to exist on a flat interface between a liquid and a solid (the possible

existence of a unique type of surface wave along the flat interface between a

* 14
vacuum and a solid was first demonstrated 100 years ago by Rayleigh in 1885

hence the name) and a number of "whispering gallery" surface waves whose phase

velocities went asymptotically to the phase velocities of the shear or

longitudinal waves of the solid. 2  These whispering gallery waves correspond

in the limit that ka t to shear or longitudinal surface waves which are

found to exist when a plane wave is incident from a liquid onto a flat

interface between the liquid and a solid at the shear critical angle 9 or
S

longitudinal critical angle 6L" These critical angles are related to the

relative acoustical velocities of waves in the liquid and the solid.

Reference 12 discusses the above identifications in some detail.

Before proceeding it is appropriate to further characterize the

Rayleigh surface wave since it will prove to be a central character in the

analysis which follows. The particle displacement for a Rayleigh wave is a
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unique combination of shear and longitudinal displacement. The amplitude of

the shear and the longitudinal particle displacements decay exponentially as

one proceeds away from the liquid solid interface. The decay constants,

however, are different. The phase velocity of the Rayleigh wave on a flat

interface is slightly less than the shear wave phase velocity of the solid. A

discussion of the flat interface Rayleigh wave can be found in Ref. 15.

Figure 3.8 of that reference shows the combined particle displacements of a

Rayleigh wave as a function of the observer's distance from the interface.

That figure has been redrawn here as Fig. 4. In 1969 Rulf published an

article examining Rayleigh waves on cylinders.16 Fis work indicated that the

Rayleigh wave velocity on the surface of a cylinder is a function of the ka of

the cylinder. This velocity went asymptotically to the flat surface Rayleigh

"wave phase velocity as ka * •. Similar behavior will be found in Chapter 2

for the Rayleigh wave when seen on spheres.

Experimentally, backscattered echoes resulting when a short tone burst

was incident on an aluminum cylinder showed a decaying pulse train similar to
17

that shown before for the Armico iron sphere. The SWT results allowed one to

identify some of these echoes as due to specular reflection and bulk waves

"transmitted within the cylinder and others as due to repeated

circumnavigations of the cylinder by surfaces waves which periodically

radiated energy in the backscattering direction.17 In short, the SWT analysis

for elastic cylinders allowed an interpretation of the echo structure not

obvious by use of the PWS alone. The same sort of ideas should be applicable

to elastic spheres. Rowever, one might expect new phenomena due to the

increased symmetry of the sphere.

The SWT analysis was also found to be useful in understanding steady

state results. In 1977 Uberall, nragonette, and Flax published a paper on the

, . . . . . .. ,, .. .,. .. ., ., . ... • ... .. , .,. . , ..-. ,, .. .. -,..,- - ,,...' : -. ,.. ,..,.... .,,,. ,. . . .
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relation between surface waves (also known as creepLag waves) and normal modes
18

of vibration of a curved body. Each term of the PWS solution to a problem

can be identified as a multipole. Each term may resonate (i.e., diverge) at

several ka values. Uberall et al. argued that for a cylinder the resonance of

ththe n term of the PWS occurred at ka values where n cycles of a particular

surface wave fit on the body. These ideas had been useful in particle physics

where it was termed Reggi pole analysis. These ideas eventually led Flax to

propose in 1978 an acoustical and electromagnetic scattering theory which

examined PWS results directly and used nuclear scattering theory ideas. This

theory was termed Resonance Scattering Theory (RST). 1 9

RST achieves a separation between rapidly varying *resonances"

portions of the PWS for the scattered signal and a slowly varying background.

In particular, for an acoustical plane wave scattered from fluid-loaded

elastiq bodies such as cylinders20 or spheres21 the RST was used to interpret

the rapid fluctuations in the backscattered pressure as the ka of the body is

varied (cf. Fig. 2a). One of the important numerical tasks in RST is to find

the complex "resonance" ka values which locate the poles of the scattering

amplitude. Two basic ideas are then used in interpreting scattered pressures.

21For a sphere these ideas translate into the following statements : (a) each

of the many resonance ka's can be labeled with the integers a and Z and at

the (n,Z) th resonance (n + 1/2) wavelengths of the Zth surface wave fit

onto the circumference of the sphere, (b) that any rapid fluctuation in the

backscattered pressure is due to in-phase adding of a specific surface wave

f(n,i) resonance] and these fluctuations are thus associated in a simple

fashion with the set of multipole resonances for the sphere. Two of the major

goals of the last chapter of this dissertation are to examine the limitations

of these ideas.

. . . .. . . . . . .. . . . . . . .. . . .
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An example of the type of results which can be developed through the

%, use of the RST ideas is shown in Fig. 5. In that figure (which is equivalent

to Fig. 8 of Ref. 21) the absolute value of backscattering form function

(related to the backocattering pressure, cf. Chapter 3) for a tungsten carbide

"sphere is shown. Also shown are some of the resonance ka values. Their

positions are indicated by arrows and they are labeled by the (n,Z) pairs

whose meaning was discussed in the last paragraph. Rapid fluctuations in the

form function are found to occur at ka values close to specific (n,l) pairs.

In Chapter 4 we investigate, through the use of the SWT, the specific case

depicted in Fig. 5 in order to better understand the caution which should be

exercised in using the RST labeling of the baLkscactering form function.

It is interesting to note in passing the similarity between the

structure found in Figs. 2a and Fig. 5. It would seem that appropriate

rescaling of the ka axis of Fig. 2a would yield results which could be

overlaid on the tungsten carbide result with good agreement. This might

suggest similar physical reasons for the structure.

It should be emphasized again that in the case of a sphere that the

RST attempts to interpret the PWS results such as shown in Fig. 2a in terms of

the surface wave picture developed through the SWT without ever doing the SWT.

Once the reader has examined the SWT analysis for the fluid-loaded elastic

sphere given in Chapter 3 of this dissertation he will probably appreciate

this goal of RST. However, once he has read the last chapter it is hoped that

he appreciates the need for caution when trying to reach this goal.

The reader should not get the idea that the era between Nussenzveig'.

9,10 21papers of 1969 and Gaunaurd's paper in 1983 was devoid of fruitful

research on acoustical scattering from elastic spheres. For example, in the

seventies and early eighties other researchers used Fourier transform

....... ............. •"''",--'"
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techniques to obtain steady state results analogous to Fig. 5 froE transient

experimental data. 22-24 Rowever, we neglect discussing these and other works

in any aetaii since they are not of direct relevance to the develooment of

this dissertation.

Further discussion of RST as applied to spheres can be found in Refs.

25 and 26. These references along with Ref. 21 were the lateet research

results available on acoustical scattering from elastic spheres with

0 < ka < 100 when the research in this dissertation was initiated in 1983.

At this point it is appropriate to discuss the avenue through which

this dissertation topic was arrived at since It influenced greatly the

direction of the research. The phenomena of acoustical glory backscattering

(which was mentioned earlier in connection with Nussenzveig's papers) had been

under study27-29 in the years preceding 1983. The spheres being studied

experimentally and theoretically had ka values typically much larger than 100.

At these ka values the radiation damping of surface waves has for the most

"* part caused them to be of little importance to backscattering. The most

important waves are those of geometrical acoustics; i.e., reflected and

. transmitted waves whose progress can be ascertained by ray tracing techniques.

In the research of Ref. 27-29 the term glory rays was used to describe rays

whose corresponding waves were weakly focused along the backscattering axis;

i.e., glory scattering. A few glory rays are shown in Fig. 6 aloag with a

couple of rays whose waves are not focused. The rays labeled by n - 3,4,5

are glory rays. The value of n gives the number of ray chords within the

sphere. For instance the ray with n - 3 is transmitted within the sphere

then internally reflected twice before being transmitted along the

backscattering axis w!ich gives three chords within the sphere. The rays

labeled 0 and 2 are not glory rays. Ray 0 is the specular reflection from the

..• . .. . .. . .. .. -> . . . . . . • .. • . ... ... • . . . . . . . . . . . ..• , . . . . . . . . . . . . , . • . ... . .-. .. . , . . . _ , ,.. .' . - . ' . . . . . .
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Several rays tracing trana•mitted wave propagatioU within the sphere

are shown. 7he parameter a indicaces the number of ray chords

within the sphere. The rays Labeled a - 3,4,3 are associated with

waves weakly focused along the backscactering axis; L.4., they are

"glory rays. The waves associated with rays labeled n 0 0, 2 are not

focused.

Fig. 6.
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front of the sphere while Ray 2 is the ray which is transmitted within the

sphere, reflected from the back of the sphere, and then retransmitted along

the backscattering axis. To properly model the weak axial focusing of rays

such as 3, 4, and 5 one must use diffraction techniques. 2 8 '2 9  One finds that

glory scattering is characterized by a J (kby) angular dependence in

pressure amplitude for small angles y away from the backscattering axis

where J is the zeroth order Bessel function. The parameter b is shown in

Fig. 6 for the n - 3 glory ray and its significance is discussed in detail

in Refs. 27-29 as well as Chapter 2. The Jo angular dependence was

confirmed experimentally by use of backscattering echoes resulting from tone

bursts incident on a fused silica sphere with ka = 457. Because of the

different propagation times the tone burst experiments allowed isolation in

time of various glory ray contributions. A comparison between the theoretical

and experimental angular dependence for a glory ray with n 4 4 is shown in

Fig. 7. The model also allowed calculation of the absolute pressure amplitude

along the backscattering axis (when y - 0) for any glory ray. These model

predictions were tested experimentally for eeveral glory rays and were found

to give answers within 5 percent of experimental results.

It is interesting to ascertain whether surface wave contributions

which are important at lower ka's can be shown experimentally to display weak

axial focusing. Next, if surface waves do display glory scattering can one

develop a model of surface wave glory which allows one to predict the absolute

pressure amplitude along the backscattering axis?

At about the same time that the last reference on transmitted wave

29 21glory was submitted2 9 the RST article by Gaunaurd was published. It was

felt that research which would be necessary to answer the questions above on

surface wave glory might also be useful in developing a better understanding

% .- - f



".4

21

.0.

- I-

I •~he resu~l.t of aomparis•onl ofhe exporl- nca.] angular depen~dencet

,, •~~ound as a. retceivetr hydrophoant was displ.aced &-ay from t he

""backxseattering axiLs 79., the theoretical. J0 (bY) dependence

e''4

._-.. predicted. 7he does are experimntual resut•Ls and the cur-ve

theorstc~l~ resul~ts. 7he glory ray being testedL in this case had

a - 4. Along the hor12ouc&, axis x - 0 correponds to Y -0 and

"Ii 2 corresponds to Y .05 rdians.

SFig. 7.

,"0



*V]J' .i •-r C, *. ,• .•:i . * 1 * -' . ; * , •] ¶. - *A : • ,. • ;. • -. • ' •~ ' •. *',• _ 1 • • .

22

of RST. In the course of answering the questions on surface wave glory

scattering and trying to understand RST the historical perspective which has

formed a large part of this introduction was developed.

The next three chapters address the issues put forth above. Some

comments on the general structure of each chapter are useful. Each chapter is

in reality a paper which has been submitted to the Journal of the Acoustical

Society of America. As such, each has its own introduction section,

Pnpandices, references, figure numbers, and equation numbers. The papers

which form Chapters 2 and 3 have been accepted for publication at the present

time while the paper which foriLs Chapter 4 has only recently been submitted.

Also included as a separate appendix are the computer programs which were

developed for the calculations carried out in Chapters 2 through 4. This

appendix contains text which introduces each program and briefly discusses any

cautions deemed appropriate.

In Chapter 2 a theoretical model for surface wave glory is developed

via two different routes. The first uses GTD, RST, and some of the ideas and

results used in the transmitted wave glory model. This method allows a simple

intuitive picture to be formed of the production of surface wave glory. The

second method uses a slightly di2ferent form of the (PWS) in Eq. (9). The use

of the SWT is intentionally avoided in Chapter 2. Howmver, it is through the

use of the SWT (which is carried out in Chapter 3) that one can obtain a

theoretical prediction of the on-axis pressure amplitude of the surface wave

glory. In Chapter 2 the model developed for angular dependence of the surface

wave glory is experimentally tested using tungsten carbide spheres with

30 < ka < 100. The agreement between experiment and theory is good.

In Chapter 3 the SWT is performed and the relation between SWT results

and those of Chapter 2 are discussed. The SWT of Chapter 3 concentrates
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Mainly on contributions from the specular reflection and surface waves at

small backscattering angles. The SWT is a more rigorous method through which

one can predict the possible experimental observation of glory. It confirms

the physical model used in Chapter 2 and for the first time predicts the

absolute backscattering amplitude associated with one or more

circumuavigations of the surface wave around the sphere; i.e., it predicts the

amplitude of various surface wave contributions to the decaying pulse train

seen in tone burst experiments. This prediction is tested experimentally in

Chapter 3 using tungsten carbide spheres. Again, the agreement is good.

Finally in Chapter 4 the RST ideas discussed previously in this

introduction are reexamined using the ST results of Chapter 3. The chapter

uses the specific case of the backscattering form function of a tungsten

carbide sphere (cf. Fig. 5). The main effect of this analysis is on the

interpretation of RST. The results show that care is needed when using the

labeling of Fig. 5 to understand fluctuations in the backscattering form

function. It is also shown that RST ka resonances only approximate the ka

values at which surface waves add-in phase. Rowever, the error in this

approximation is usually negligible.

1%
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Chapter 2

AXEALLY-FOCUSED (CLORY) SCATTERING DUE TO SURFACE WAVES GENERATED

ON SPHERS: MODKL AND EXPERIInTAL CONFIqRMATION USING

KuN STL• CARBIDE SPHERES
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2.1 Introduction

An understanding of the echo structure and angular dependences for

scattering from spheres (or other elastic objects ensonified along an axis of

symmetry) may be facilitated by modeling the focusing of sound along the

backward axis. We have previously studied this axially focused scattering

from large elastic1 ' 2 or fluid3 spheres where the focused waves were

associated with rays transmitted through (and internally reflected from) the

sphere's surface. The cases studied had ka > 100. In the present paper we

demonstrate axially-focused scattering from tungsten carbide spheres in water

having ka as low as 30. For this choice of material and low range of ka (30

< %a < 100), it is shown that surface waves on the sphere which radiate sound

back into the water produce axially focused backscattering. The specific type

of surface wave associated with the echoes studied is the one usually referred

4to as the Rayleigh wave; however, our method of analysis should be useful for

modeling the angular dependence of echoes associated with other waves such as
4

"whispering gallery" waves. Indeed, the form of the angular dependence

demonstrated for the surface wave contribution to the pressure, as a function

of backscattering angle, should be applicable to spherical elastic shells and

to certain other shapes (such as spheroids or cylinders having hemispherical

caps) when the object is ensonified along the axis of symmetry. The angular

lependence found differs from that expected for surface wave contributions to

the backscattering from right circular cylinders 5 '6 (for which the direction

of incident sound lies perpendicular to the axis of symmetry).

The backscattering echo in Fig. I was produced by a four cycle

sinusoidal tone burst incident on a tungsten carbide sphere with ka = 49.1.

The dominant contributions to the signal, after the specular reflection, are

due to Rayleigh surface waves. We experimentally and theoretically

* . . . . . . . . . - . .. * . . . ..". . . . . .
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investigated the angular dependence of thesa Rayleigh echoes as one moves away

... from the backscattering direction. Our theoretical analysis uses the high

7frequency methods of the Geometrical Theory of Diffraction (GID) and

Resonance Scattering Theory (RST). The angular dependence found can be

approximately modeled by J0 ($y) where 0 depends on the frequency of the

tone burst (or equivalently the ka of the sphere) and y is the angle

relative to backscattering. This angular dependence is due to axial focusing

and is characteristic of what has been called acoustical "glory.* -3 The term

"glory" Comes from the enhancement of backscattered light from cloud droplets

due to axial focusing. 3' 8  Previous research on tungsten carbide spheres 9 "12

does not directly address the affects of axial focusing.

In Section I we present a theoretical model of the JO(Sy) angular

"dependence of Rayleigh echoes via two different routes. The first uses GTD

and RST together with results of our previous analysis1-3 of virtual ring-like

sources. This method allows a simple intuitive picture to be formed of the

production of Rayleigh echoes. The second method uses the Partial-Wave Series

(PWS) resulting from solving the steady-state scattering from a sphere. The

approximate dependence, J0 (Sy), also follows from the form of the PWS for

spheres by way of a Sommerfeld-Watson Transformation (SWT) or a "modified" SWT

(see e.g. Eq. (5.17) of Ref. 8). Our analysis given in Sec. I.A has the

advantage that it relates 6 to the phase-velocity of the Rayleigh wave

without further use of sophisticated analytical methods. In addition, our

analysis may be extended to nonspherical objects (subject to restrictions

noted in Sec. 111) for which the PWS may not be known. In Sec. IC, the model

is specialized to the particular case of tungsten carbide spheres.

We intentionally avoid the use of the SWT in Sec. 1. Rowever, it is

through the use of the SWT that the ka dependence of the Rayleigh echo at

-7-. . . . . . . . .



L-7 7 - -7I

31

fixed y may be determined. We return to the SWT analysis in a subsequent

paper since 'the analy&, ýcr elascic spheres differs in significant details

from the analysis for other spheres 8 or elastic cylinders. 1 3

in Section II wa test the angular depevdence model on tungsten carbide

spheres with 30 < ka < 100. The experimental setup is similar to that used

1,2
previously in transmitted wave studies on elastic spheres, and so will be

discussed only briefly. It is appropriate to coment on our use of tone

bursts- for comparison with the steady-state analysis given in Sec. I. This

issue was addressed in earlier work1 ,14 on axially-focused transmitted %aves.

It was found that though the scattered tone bursts should be distorted, the

peak-to-p4ak amplitudes of the central cycle of a four-cycle burst should be

given by a steady state analysis. It is anticipated that a detailed analysis

of the shapes of transient Rayleigh echoes would lead to similar conclusions.

Tungsten carbide was particularly well suited as a target material for

these experiments because (i) the Rayleigh-echo-amplitudes were significant

for the range of ka examined and (ii) transmitted bulk-wave echoes were either

insignificant in amplitude or well spaced in time from the Rayleigh echoes of

interest. These properties are in part a consequence of tungsten carbide's

large density 14 g/cm3 .

..--........................ .... ... *. r C I,-
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2.2 Model of angular dependence

A. Angular Dependence using GTD, RST,.and Virtual Ring-Like Sources

The foundation of GTD was laid by Keller.7' 15 ' 16  The =TD is useful in

cases where the scattering body fulfills the condition kd >> I where d is

a characteristic dimension of the scatterer. It is based on the postulate

that fields propagate along rays, but introduces diffracted rays. In the case

of Rayleigh surface waves on a sphere it allows us to form the picture in Fig.

2. The "ray* AA' gets onto the sphere at angle 8a" It proceeds around the

sphere, along its surface, shedding energy continuously back into the water at

angle 8 as indicated by the dotted lines. Of particular interest is the

fact that at one point (3') energy is shed along B'A'. This process continues

and after circumnavigation of the sphere again more energy is shed in the

backward direction. This process can be pictured for any number of trips

around the sphere. A smaller amplitude echo will be seen after each trip

because of the energy shedding, i.e. radiation damping.

The angle e in Fig. 2 can be determined by the following phase% R

matching criteria. For continual reinforcement of the Rayleigh wave the pl lse

velocity of the wave ca must match the component of the phase velocity in

RRwater c along the sphere's surface. This component is c/sinr. Thus we

can determine e through the equation

sin 6R R

which is actually just Snell's law.

The above ideas explain qualitatively Fig. I though, as yet, they give

no clue as to the angular dependence that will be seen as one moves away from
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A
a

OA

Surf ace wave *ray* diagram using the Geometric Theory of Diffraction

(GT).* Atn incoming plans wave represented by AB a.llows the launching

of a surface wave at 3 which circumnavigates the sphere while

reradiating back into the surroundings. At point 31 energy is

radiated In the backward direction. This accounts for the echoes

labeled 3 in Fig. 1.* F Ris the virtual, point source from which the

ray A131 and the dashed rays to either side appear to originate.

When the diagram is rotated around the CVC axis, the point ? tracesR
out a virtual ring-like source.

Fig. 2.
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the backscattering axis. To obtain the angular dependence of the Rayleigh

echoes one must examine the dashed lines to either side of B'A'. These

represent radiation damping slightly away from the backacattering direction.

By tracing these rays as well as B'A' backward we arrive at FR from which

they appear to originate. (In the Appendix the horizontal position of FR

behind the vertical line through C' in Fig. 2 is found to be equal to a,

the sphere's radius.) Next, because of the spherical symmetry of the

situation, one can rotate the picture around the line CC' in which case the

point F traces out a circle. Thus one sees that the Rayleigh waves appear

to emanate from a ring-like source with radius b - a sine 0 When extended,

the F D ray intersects the backscattering axis. Rays such as F D are

responsible for the axial focusing when the CC' rotation is performed. (in

the limit that the observation point goes to infinity FaD goes to F A'.)

Ring-like sources have been discussed in the previous work on acoustical glory

due to transmitted waves in spheres. "3 These sources lead to an angular

dependence for pressure amplitude which can be approximated as

PM - p(y-O))IJ 0 (kby)l , Y << I radian (2)

where y is the angular position of the observation point in the Fraunhofer

or Fresnel region,I relative to the backscattering axis and the sphere's

center. (See Eq. (16) of Ref. 1 where in the present case z n z + a,

Y = tanY - h/z 0 , and h corresponds to x in Fig. 4 of the present paper.)

The results to this point lead one to expect the following form, in

the backscattering region, for the pressure amplitude of individual Rayleigh

echoes in Fig. 2

P, = A,(ka) J.(0Y) (3)
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where the argument of the Bessel function combines Eqs. (1) and (2), and

8- kac/cR, and m is a natural nuuber(0,1,2 . . .). In this expression m

indexes which Rayleigh echo we are examining, i.e. m a 0 implies the first

Rayleigh echo after the specular reflection etc. Am is the on-axis amplitude

of a particular Rayleigh echo and may be a function of ka. The phase

velocity ratio may also be a function of ka.

Calculation of the on-axis amplitudes A (ka) and the phases of

Rayleigh echoes requires use of the SWT. Rovever, knowledge of this parameter

is not required in order to test the J0  dependence of the Rayleigh echo. We

therefore defer to a subsequent paper calculations of the A m's and of the

phases of the Rayleigh echoes.

To obtain angular dependence results to compare with experiment one

must know the phase velocity ratio c/c as a function of ka. This

dependence can be found through the results of RST. The form function of an

9
elastic sphere is given by

f (2/ika) (2n+l) D n (cose) (4)
nmO

where e denotes the scattering angle relative to forward scattering and B
n

and D are determinants of 3 x 3 matrices whose elements are combinations ofa

spherical Bessel and Hankel functions. 9  In RST one examines the PWS of Eq.

(4) term by term. Resonances in each term are determined numerically. One

finds the resonant ka values for the nth term by solving the equation

D (XnM9 -0 (5)

where X ni is the Lch resonance of the nth term. Knowing the value of a

particular resonance in the nth term allows one to approximate the phase
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velocity of the surface wave corresponding to that resonance. The relation

used to obtain the phase velocity at the resonance values xIa is4,17

cP/ /cN Re(X a)/(n + 1/2) (6)

The Rayleigh phase velocity cR is given by cp when Z * 1. For the

specific case of a tungsten carbide sphere the resonances corresponding co

9Rayleigh waves have been found for a - 0 to 7; ac /c as a continuous function

of ka can be found by curve fitting the discrere values found via Eq. (6).

Equation (3) with cR(ka)/c found using Eq. (6) represents the final results

for the angular dependence predicted for Rayleigh wave echoes. It is evident

that the reasoning above can also be applied to whispering gallery waves.

B. Angular Dependence using L~egndre Polynomial Expansions

It is appropriate to discuss briefly an alternate route to the angular

dependence found. If the tori function of Eq. (4) is rewritten using Y - Tr -

0, where Y is the angle relative to backscattering and here e is the

scattering angle relative to the forward direction, it becomes

f (2/ika) a (-I)n(2n+l) Da (ka) - n(cosy) (7)
n0O

For small angles Y one can use the following expansion derived by Szego88

Pn(cosy) (Y1sin¥) 12 J 0 ((n + 1/2)y) + 0(n- 3) (8)

4Close to a Rayleigh resonance ka Ra X and the Y dependence of the
n,1.

nth partial wave amplitude is similar to that of Eq. (3). This follows by
noting Eq. (6) gives cR/c = ka/(n*1/2) and hence that 8. kac/c. = r /2.

Taking y/siny 1. reduces the y dependence of Eq. (8) to the form of Eq. (3),
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P (cosy) 0Jo(y) (9)

C. Specializing Angular Dependence Model to a Tungsten Carbide Sphere

Earlier it was stated that the Rayleigh resonance kca's were known for

a tungsten carbide sphere for the specific cases of a a 0 through 7.

Unfortunately, for us* in comparison with our experiment we need the Rayleigh

resonint ka's for a - 10 through 30. Since these were not available, we

developed a computer program which would find them. (The program was verified

with the results given in Ref. 9 for n - 4 through 7.) The Rayleigh

resonances for n - 0 thraugh 30 are given in Table I. The elastic

parameters used in the program ara given in the caption to the table. The

results for a - 0 through 3 are from Ref. 9, the rest of the resonances are

from our program. Using these resonant ka's and Eq. (6) we obtained the phase

velocity ratio as a continuous function of ka for ka from 0 to 85. We also

calculated the group velocity ratio for the Rayleigh wave using '17

/c / d(Re(X dn(10)

Curves for both the phase and group velocities are given in Fig. 3. Note that

the group velocity ratio is essentially constant for ka > 30. Re can use

this result and integrate Eq. (10) obtaining

(c /c)n + G' W Re(X n)

where G' is an integration constant. Then writing G' as G' - G + c /(2c)

we have

(c /c)(n + 1/2) + G - Re(X ) ka
g ni.

- ._. ~ . . .
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2 A

0 so 108

ka

Rayleigh velocity ratios for a tungsten carbide sphere as a function

of cka. The individual curves are: A- group velocic7 ratio, 3 -

phase velocity ratio u.sing Eq. (11), C phase velocity ratio using

Eq. (6), D - the phase velocity ratio for a Rayleigh wave propagating

along a tuu1gscen carbide-water plans interface.

Fig. 3.
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Finally, using Eq. (6) and some algebraic manipulation we have the relation

cR/C - (ca /)(l G/ka)-I (11)

between the phase velocity ratio and the group velocity ratio. G in this

expression is a dimensionless constant. We emphasize that this is valid only

if C5 /c is independent of ka.

A comparison between the exact curve for c Ic and the approximate

formula of Eq. (11) is shown in Fig. 3. For the case represented in Fig. 3,

c /c = 2.60 for ka > 30 and G was chosen as 3.1. For ka > 20 agreement
9

between Eq. (11) and the exact curve is good.

Also shown in Fig. 3 is the phase velocity ratio for a Rayleigh wave

propagating along a flat tungsten carbide-water interface. This ratio was

obtained by numerically solving a secular equation (below) for cf, the

complex phase velocity along a flat solid-liquid boundary. Let u - (cT/cf)

2and v - (cT/L) where cT and aL are the transverse and longitudinal

phase velocities respectively. The secular equation 19,20 is

(!-2u) - 1u2 (u-i)1/2(u v)1/2 - i(p/s)(UV)1/2[ 2 - 1-/2

where Pz and P are the densities of the liquid and solid respectively.

For the material parameters given in Table 1, this gives cf - (3.8154 -

5t0.0192) x 10 cm/sec for the Rayleigh root. The flat surface ratio shown in

Fig. 3 is Re(cf/c) 2.60 and both ca/c and c /c were found to approach

this value as ka -.

Using Eq. (11) and 8 - kaec/ one has

8 = (c/c )(ka•-) (12)
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which can be substituted into Eq. (3) to give the normalized pressure

amplitude of the mth Rayleigh echo when c /c is constant.

"In the experimenc to be described p(y) is determined as the receiver

is moved away from the backscattering axis. These data were fitted to give

the location of the first pressure null. This procedure is repeated for

several ka values. Examining Eq. (3) one sees that the pressure null location

corresponds co the point where the J0  angular dependence first equals zero,

i.e. when

(c/c )(ka - G)ym 2.4048 (13)

Y is the angle in radians corresponding to the pressure null. Equation (13)

can be rewritten as

ka - (cc c)(2.4048)y1l + G (14)S m

* Since c /c and G are constants this relation implies that a plot of ka
8

% v ym should be a straight line. Furthermore the slope of that line

depends on the value of c /c. The theoretical prediction above will be

tested experimentally in the next section.

2.3 Experimental test of angular dependence

In this section the J0 angular dependence model, as specialized in

Sec. I.C to tungsten carbide, will be tested. The experimental apparatus has

1,2been discussed previously. Rere we note only the significant alterations

to the apparatus which facilitate implementation of the current experimental

test, and then proceed to the experimental procedure and results.

Figure I of Reference 1 is shown again in Fig. 4. This tigura gives a

conceptual description of the experiment. A piston-like transducer produces a

short sinusoidal tone burst 4 cycles in duration. This tone burst is

I:•' ."."...............................................-.-.......• •''." ...- .• .• . ...." - -.'............
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COAXIAL

J CABLE 
I

NEEDLE 4I

AXIS7PISTON d A - - c
HYOROPHONE C i•,,,...•

" SCAN XIS •SPHERE//

BAFFLE SCAN AXIS I

U!mplilfied diagram of the scacter±ng experiment. The hydrophone may

be scanned al.ong a line transverse to the symetry' axis defined by

the source and the sphere. y is the angle relative to

bakackacterinig. The diagram is not drawn to scale. In all tth

experiments described in Section 11, zP 160 (m, while z 2 33 am

for experiments with chA 2.34 cm diameter tungstean carbid.e sphere and

z 1 .9 cm for experimentcs v the 1.27 am sphere.

Fig. 4.
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scattered from a tungsten carbide sphere. The resulting echo is picked up by

a needle hydrophone which may be positioned at small angles Y relative to

the backscattering axis (tauy - x/(z+a)). In the present experiment the

Panametrics model V309 sending transducer of Ref. 1 was replaced by either a

Panametrics model V3261 or a Panametrics model V3260. These broadband

transducers have lowr resonance frequencies than the V309 (the V3261 has a I

MHz resonance and the V3260 a 2.25 MHz resonance compared with 5Mlz for the

V309). In this experiment, which uses a 1.27 cm and 2.54 cm diameter tungsten

carbide sphere, these transducers allow investigation in the ka range from 30

to 100. The only other significant changes in apparatus from Ref. I are the

use of a digital signal averager (described in Ref. 2) and a new target

mounting system. The main concern in designing a mounting system is to

eliminate spurious echoes in the time window of the experiment (cf. Fig. 1).

The procedure used to test the model was to average the echo received

at any angle y over 256 bursts using the digital scope. Then the amplitude

in volts of the central cycle of the first Rayleigh wave was determined. This

voltage and the angle y were recorded in a data file. The amplitude of the

first Rayleigh wave was found via the process for at least 25 values of y on

either side of Y - 0. The computer normalized all data points by dividing by

the amplitude at Y - 0 and plotted these normalized points on an amplitude

vs Y graph. The computer next generated plots of the function JO(ay) for

several values of the constant S to find the value yielding the closest fit

to the experimental results. An example of the results of this analysis is

shown in Fig. 5. One immediately sees at least qualitative agreement betweIen

experiment and the model of Eq. (3).

T'he procedure above was repeated for 29 frequencies corresponding to

ka values from 30 to 100. The 29 values of ka gave 29 different 6 values.

. . . . .... . .
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Experimencal and theoretical resu•.s for ka - 60. The dots are

exp~rlmencal resu.lts of the angular dependence of the firsc RayLeigh

echo amplitude normalized to the Rayleigh echo amplitude when y, the

backsca.tering anglo, vanishes. " he squares shov experimental

results for the specular reflection amplitude as a function of y

n.ormalized to the specular reflection amplitude at y , 0.

Fig.
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These B values were used to find the smallest angle YM for which JO(Ny3 )

equaled zero, i.e. By M 2.4048. This gave 29 values of Ym which were

plotted on a graph of ka vs y

To compare the experimental results for ka vs Y m1 with the

theoretical prediction of Eq. (14) one needs the group velocity ratio for the

sphere being used. The group velocity ratio can be obtained from the time

spacing between Rayleigh waves. This spacing remained essentially constant at

ai.l ka values examined as it should if the group velocity remains constant as

predicted in Fig. 3 for the ka range of interest. The experimenr .' Up

velocity ratios found tre 2.46 ýor hc 2.54 cm sphere and 1.610 tor the 1.27

"cm sphere. One caveat should hv, .otad. The constant G was found via an

analysis using the elastic pr,.rameters in Ref. 9 as in Table 1. The elastic

parameters of our she!:e should be close but not necessarily the same. This

difference will -'r,-bably have a small effect on G.

In F1. 6 the experimental results for ka vs Ym are compared with

the model prediction of Eq. (14). The theoretical lines used G - 3.1 and the

approximate experimental values of c /c. Figurs 6a shows the comparison for, g

the •.54 ci sphere and Fig. 6b shows the comparison for the 1.27 cm sphere.

7.,c agreement between model aud experiment is good. This agreement confirms

the theoretical model developed in Section 1.

Figure 7 shows the data obtained at the lowest ka values examined;

i.e., ka - 32.3. The data appear to have a small-amplitude structure

superimposed on the J0 (Sy) dependence. The cause of the structure was not

determined.

I *.

"..V
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Experiment vs theory results analogous to Fig. 5 but at the 1 .%mst ka

v&Lue tasted; L..e. kc - 32.3. The dots arm experimentcal. results.

The curve is given by w'0 (•7)I uirth • adjusted to fit the data.
"oOI
"f" rom Fig. 6(b) it is evident tbat this 5 gives a vaLue for y7 which

gtrees with theory.

"Fig. 7.
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2.4 Discussion

We have presented a model of the axially-focused scattering due to

surface waves generated on spheres. We have verified that the angular

dependence of the pressure amplitude is a J0 (0y), which may have been

anticipated from the SWT applied to other surface wave scattering problems. 8

We have related 8 to the surface wave's phase and group velocities and have

verified the modeled $ for the range of ka examined. The experiment

demonstrates that axial focusing can be important down to ka's of at least 30.

These results complement our earlier work on acoustical glory for large

spheres (ka > 100) where the axial focusing was due to transmitted waves not

1-3surface waves.

The model of axial focusing was derived using two methods. Both

approaches led to the same angular dependence prediction; however, neither

methoi gave a quantitative prediction of the on-axis amplitude of the surface

wave echoes. This shortcoming can be eliminated via the use of the SWT as

will be shown in a subsequent paper.

As an indication of the difference between the angular dependence of a

focused and unfocused echo, data on the y dependence of the unfocused

specular reflection3 from the 2.54 am diameter tungsten carbide sphere were

obtained. These data are shown as squares in Fig. 5. Only small fluctuations

in the amplitude of the specular reflection are seen. This can be contrasted

with the J amplitude variation of the focused Rayleigh wave. (The origin

of the small fluctuation in the specular reflection has not been determined.)

The arguments used here in our method of predicting the high-frequency

angular dependence of surface wave echoes can he extended co non-spherical

elastic objects possessing a symmetry axis. When the object is ensonified

along its axis of rotational symmetry, axially-focused surface wave echoes
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should be present in the near backward scattering direction. It is necessary

that the phase matching criteria be met for the excitation of a surface wave

and that the attenuation associated with circumnavigation be sufficiently

small. The consequences of focusing are evident in previous measurements of

the backscattering of tone bursts from a spheroid in air (Fig. 6 of Ref. 10).

The creeping wave (i.e., Franz) echo was significantly larger when the

spheroid was ensonified along its symmetry axis than when ensonified

perpendicular to the symuetry axis.
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Appendix: Location of the Focal Circle

In this appendix we calculate the horizontal distance a of the

point FR in Fig. 2 behind the vertical line through C'. In Fig. Al a

portion of Fig. 2 is redrawn. The surface wave is launched at point B.

Radiation in the backscattering direction is represented by ray A'B' while

radiation at an angle Y relative to backscattering is represented by A"B".

The intersection of the backward extrapolated A,3" and A'B' in the limit

Y 0 0 defines the location of the virtual focus FR.

Inspection of Fig. Al shows that 6 - Y. In the limit y - 0, it is

evident that the distance between B' and B%, denoted as (B'B"), becomes a6

where a is the sphere's radius. Inspection of Fig. Al also shows that

(3"C") - (B'B")cose as Y - 0 and that (B"C")-a•'. Combining these results

gives a' ' a cos 6 R By definition, a - a' + a(l-cos6 ) which gives a - a.

The result a - a could have been anticipated from the calculation of

a in Ref. 2 of for the case of transmitted waves within an elastic sphere.

If we examine Eq. (10) of Ref. 2 in the limit that n (the total number of

chords of the transmitted wave within the sphere) goes to • we find a - a.

.5.

."-.-.5.. '..•.... " ". '. '• , • ," ". * ", ". ".- ,'- . , *, d"• .'. 2 . •.
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The region of Fig. 2 ralsevnt to Calculating the horizontal position

of point F R behind the vertical line through C' is shown.
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3.1 Introduction

Understanding the physical nature of the echo structure of elastic

"objects having simple shapes is an important steop toward understanding echoes

from complex elastic bodies. Studies on acoustical scattering from spheres

and cylinders 1- 1 1 date back to Rayleigh. 1 The plane wave scattering of an

"elastic sphere or cylinder may be written as an infinite partial-wave series

(PWS).2,3 At high frequencies the PWS converges slowly and the Sommerfeld-

Watson transform (SWT) may be used to convert the PWS to a more rapidly

"convergent form. 3  Furthermore, the results of the SWT may be interpreted in

terms of reflected and transmitted bulk waves and the scattering contributions

of Franz, Rayleigh, and whispering gallery waves. in this way, the physical

origins of the echo structure are elucidated. Detailed analysis using the SWT

has been carried out on fluid-loaded elastic cylinders.)' The "modified" SWT

has been used to study the case of scalar plane wave scattering from a

4. 12,13transparent sphere. '1he transparent sphere analyses may be used as an

aid in understanding acoustical scattering from fluid-loaded fluid spheres.

In the present paper we carry out the SWT on a fluid-loaded elastic sphere.

The analysis for elastic spheres differs in significant details from the

"analysis for other spheres 1 2 ' 1 3 or lasi cylinders. 3 ' 4

Our SWT analysis concentrates on the specular reflection and Rayleigh

-'ave contri.butions to scattering at small backscattering angles. Previously

we have measured and modeled the angular dependence of the Rayleigh

contributiors to near backward scattering.14 The SWT confirms the physical

picture used and, for the first time, predicts the absolute back3cateering

amplitude associated with one or more circumnavigations of the Rayleigh wave

around the sphere. Explicit expressions for the damping of Rayleigh waves on

an elastic sphere due to radiation into Lhe surrounding fluid are obtained.

*a

. .44
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The analysis may be extended to include whispering gallery waves. Though the

emphasis of this paper is on the backward axially-focused scattering from

spheres, the resulting physical picture should be applicable to to the objects

of revolution ensonified along the symmetry axis.

To test the SWT, tungsten carbide spheres in water ware ensonified by

tone bursts having central frequencies such that 24 < ka < 80 where a is the

sphere's radius and k is the wavenumber. Measurements were made of the

first and second Rayleigh contributions to the backscattered pulse train.

Plots of the measured distinct Rayleigh amplitudes as a function of ka confirm

the results of the SWT and illustrate the significance of radiation damping

and axial focusing.

In Section I the SWT is performed. The criteria ka >> 1 is assumed

throughout the section. The physical picture which ensues from the analysis

is discussed. The analytical prediction of the Rayleigh contributions to

beckscattering follows from the discussion. In Section I1 tungsten carbide

spheres are used to experimentally confirm this prediction. Throughout the

paper we relate results of the present analysis to the work of Ref. 14.

Section III discusses the results.

3.2 The Sommerfeld-Watson Transformation

In this section the SWT is carried out on the total pressure field of

a fluid-loaded elastic sphere ensunified by a plane wave. An expression for

the form function f ensues from the initial analysis. Having obtained f,

further an~alysis will concentrate on its interpretation. The main emphasis of

the analysis will be on the specular reflection and Rayleigh contribution to

f at small backscattering angles. However, extensions necessary to include

other waves are delineated. Portions of the present analysis parallel the SWT

analysis of a fluid-loaded elastic cylinder. 3
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Using the coordinate system shown in Fig. 1 and au~uing a unit

amplitude plane wave traveling in the +t direction the totaL pr, ssure in the

fluid surrounding the sphere is the real part of11

-it B h(1) (r)n• I
p(r,O,t) - aiwtnO in(2n+l)(Qn(kr) + n

In this expression P - cose, k - w/c, c is the sound speed in the liquid, r

and the scattering angle e are defined in Fig. 1, j and hn are spherical

Bessel and Hankel functions, and Pa is the Legendre polynomial. B and D

are 3 x 3 determinants whose elements are given in Appendix A. They are

functions of x, xs, XL, POO PE where x - ka; x. M xc/cs; cS M shear sound

speed in the elastic sphere; 7, - xc/cL; cL - longitudinal sound speed in the

elastic sphere; P0. density of the liquid; pE - density of the solid.

The SWT consists of rewriting the PWS of Eq. (1) in terms of a contour

integral using the relation1 5

-iTrX
&(n + 1/2) - ( gQX) - d, (2)n0 I

" The contour r is shown in Fig. 2. The contour surrounds the positive poles

of (cosa )o . Substituting Eq. (1) into Eq. (2), using

C n D njn (kr) + BnH (kr), and the substitution v X- 1/2 for compactness

of notation, we have

C -i• 1/2

p(r,) -ir/4 X( V-) P•V() cosl dA (3)

We proceed by deforming the contour so p may be written as an integral over

the poles of 1/DV in the first quadrant (Section 11 discusses a pole finding

procedure). The general location of the poles in the first quadrant is shown

.. 71
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Ax

A
z

Sphere

The r, 3, 0 coordinrat:e system shown above was med in writing the
partia.L mave series (PWS) sol.uctou to plane wave scattering !row an

elastic sphere. The plane wave is assumed to be C7 .*J.LSig in Cho +z

direc tion
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Contour used in rewriting the PWS solucion as a contour incegral in

the complex X plans. The half integer points along the real

ams are poles of (cosTrA)-. The residues of the incegrand at chose

poles recaptures the NWS.

Fig. 2<
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in Fig. 3. The location and identification of the poles as Rayleigh,

whispering gallery, or Franz was checked using the specific case of an

aluminum sphere with the same physical parameters as the aluminum cylinder

which was addressed in Ref 3. Figure 3 also shows a contour

T r, , = (• , r, r, 2 - r, r!). There are no poles within the contour.

Therefore the integral of Eq. (3) over this contour would vanish. In Appendix

B we show that the contributions to the integral over T due to the paths at

Sare negligible. With this result we can write p as p p pI + p11 where

V (-irXA/2
S(-) cosTT dA (4)

and the respective contours are r a ' and r r We limit the
1 0 I1

analysis which follows to pI since it contains, among other things, the

contributions of main concern to us; i.e., the specular reflection and

Rayleigh surface waves. p1  is the "background integral" which has been

argued to be small in the cylindrical case. 3 ' 4  We will return briefly to p

in Section II.

To evaluate p1 we first break r0 into contours r and r, shown
10 12

in Fig. 4. This must be done as a preliminary to separating out the

contributions to p1  from the incident, and bulk waves.3 Then, in the r2

integral, we use the relations 9 ' 1 5

i 7V (p) + 21 i coswX Qýl (14) P (P) (5)

( W) 2+ 2 P + () P (6)

where P. and Q. are Legendre functions of the first and second kind. The

auxiliary function Q(1) is introduced because of useful properties15 when

|! •
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* Whisper~ig Gallery Poles \,

The contour -(r", r -r £' t') is used to, rewrite :he

* ~contour integral. for the pressure. The pressure can be written as a

contour integralt over r' and r1
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£ Franz Poles

* Rayleigh Pole

o Whisering Gallery Poles

The contour rF of Figure 3 can be separaced Into contours F and

7" shown. The contour 1' is used to find rho contribution to Che' 2 S

pressure from the incident plans wave and Che specularly reflected

wve.

Fig. 4.
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I >I > 1 (see Appendix C). Substituting Eq. (5) into Eq. (4) we have

P,= PI + P2 + ?3 where

-17/ ()() i7r / 2(7
P a 21 j aK31 0) k dA (7)

2

P2 a r -13714 F1 X) P(-1u) dcs ArX (8)
r'2

r3 -'•4F~)P()siTX/2

" i cosA dX (9)

and F X() - XA /Dv . Note that the integrand of p1  no longer has the term

(cosvTA) and therefore it has no poles along the real axis.
b2

We now examine the expression for r >> ka2 (the far zone) and show

that it leads to

- e ikrikz as k
P2 (10)

where f is a form function descriptive of the scattering for ka >> I.

To aid in manipulating the expressions for pi, PZ, and P3 we rewrite

FI(X) using the relation

(kr) - ( (kr) + h (2 (kr)) (11)

and the result from Appendix A (Eq. (A4)) that

B/D. - + H 2 ()v(12)

V V-

where £ and + are given by Eq. (AS) and R is a cylindrical Rankei

. . . . . .



65

function. Substituting Eq. (11) and (12) into CV D- (kr) + B h( 1 )(kr)
V V

and using this result in the relation for F( 1X) gives

F M h(2) (kr h(1) (kr))' (13)

(X) V

When this expression is substituted into Eqs. (7), (8), and (9) we find there

is no contribution to these integrals due to the h(2) (kr) in Eq. (13) since

r and r2 contain no poles of h(2) (kr) and since along rP, h(2)(kr)
1 2 v2'

vanishes exponentially as a function of X over the portions of r2  which go

to -. (The latter assertion may be established using the methods of Appendix

B. See also Ref. 4 and references therein for the cylindrical case.)

The above results give for p,, P2, and p3

p -i { L3'r/4 F2 (Xx)h•1 ) (kr)q'•() (M eaiA/2 dA (14)
Pr2

P2 - ' j F2 (Xx)h( 1 (kr)p( d (15)

3 -il'4 2 X, x)h~ (kr)P\(ij) dI (16)

Jr1

where F (X,x) XH (x. Since the integrand of p1  contains

no poles along the real axis we may deform r2 into the path rS shown in

Fig. 4. rP goes through the two saddle points found to exist for the

integrand of p1. The righc-hand saddle point is found in Appendix C to lead

to the incident wave exp(ikz)• This and the approximation

h( 1
J(kr) z (kr)- exp[i(kr - vTr/2 - i/2)], which is valid for kr ", allows f in

h .U , U

.. .. , . . .U. . . . - . •.. . . . ,. ,,• ,-• • ,, , ,,, ,. . ,,•r.. , ,1 ..
. ,
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Eq. (10) to be written as f " f 1÷ f2 + f3 where

12 213
f- 2i " Q 2 ;• ý (4) d'X (17)

"."2

r L

f1 1 F 2(X,x) d6"2 Ua r 229co

f - F(X,x) -2 -dA (19)3 i rcosir

In f the contour r L is only a portion of the contour rS namely

that portion which goes over the left-hand saddle point since the right-hand

saddle point has already yielded the incident wave.

The problem now is to evaluate f and interpret the results. In

examining f we will be particularly concerned about its form at small angles

Y relative to backscattering where ir - 9 w y, IyI << 1 rad. It can be

verified via the analysis which follows, that as 9 increases from 0 to 7,

the left-hand saddle point approaches the origin in the complex X plane.

'II
"j•,, This implies that for small angles relative to back~scattering the 1' contour

encloses no poles and f3 - 0. Therefore near backscattering we need only

examine f I and f2

"In the cylindrical case an analysis of an integral similar to f has
4.

"been carried out. 4  In Appendix A we use the methods of Ref. 4 to rewrite
V

as s -+ ~ This allows one to write F (X,x) --' + F with

FS - R. (x)/J. (x) and Fw . -AU; N 2 )(x)/H1X)(x). With this

separation we have f1  fs + ft where f5  and f are given by Eq. (17)
I. . .. tw
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with P2(Xx) replaced by F and F• respectively. The motivation for

this separation will be evident from the results which follow.

In Appendix D, fS is evaluated via the saddle point method giving

fs ,.~ "-•, a-12kacos (y/2) (20)

where R is given by evaluating Eq. (A8) at the saddle point

X - ka sinY/2. In the limit ka . • one can show that (-RsX8) becomes the

reflection coefficient of a plane wave incident onto a plane solid-liquid

boundary at angle y/2 with ranpect to the norm.t. li particular for y 0

one finds

liz (-Rs(A -0). (E CL - Q c)/(PEc.AP + c C) - (21)ka.

For finite ka values (-RsAs) is therefore the coefficient for specular

reflection from the sphere. Equation (20) also gives the propagation phase of

the specular reflection measured relative to a wave traveling in liquid alon1-

the path (r ' '., e = 7) (r 0) -0 (r = 9, a ir--y). We have previously

obtained results analogous to Eq. (20) by different methods. t 6 ' 1 7  (In these

previous results the phase of the specular reflection was given relative to a

wave traveling in the liquid along the path (r-w, 0 -) - (r-a, e-i1) r-w,

e-ir-y)).

Through further analysis which would involve a combination of the

methods of Ref. 4, 16-18, one should be able to recapture from f the
tw

contribution to scattering from bulk waves transmitted within the sphere.

Since f w is not of direct relevance to the goals of the present paper we

will not examine it in detail; analysis using the techniques of Refs. 16

*.'.-.. f .,' ,, .';...... . . .. ','.* -'..'. ... - .. .. •..... ,* . - ./ , - .- . , . -. . , - , ' • . . - .. -,-



68

and 18 suggests •f tI is small for the experiments presented in Sec. II (a

short discussion of this analysis is given in Sec. III).

A caveat concerning the evaluation of f should be noted. The
S

asymptotic expressions used in the saddle point analysis of Appendix D

breakdown near e- 0 and e T r. For e - T the problem lies in the

asymptotic expression used for (4). Mussensveig has shown in Refs. 12

and 15 that, for scattering from a fluid or soft sphere, the saddle point

result for specular reflection remains uniformly valid up to r a r even

though the saddle point method is not valid near 8 - 7r. Using Nussensveig's

methods one may show the same to be true for evaluation of f S For 8 -o 0

one cannot une either the asymptotic expressions for Q(.I) or the Debye

expressions for the Rankel functions. In the neighborhood of 8 - 0 one must

use Airy type expansions for the Rankel functions and new effects arise. 1 5

The above evaluation of f is therefore incomplece near forward scattering.3

Using the method of residues 3 ' 1 9 ' 2 0 the integral expression for f
2

can be written as a sum over the Ray;e&igh, Franz, and whispering gallery poles

which we designate as respectively. Here X a X is a root of

the equation + 0. From the residue analysis one obtains

f 2 f f (22)

(2) (cosy)

% Z Z ka 1) () W + cos(23)

where £+ is the derivative of with respect to X evaluated at

X - X2. and the relation Tr - 8 a y was used. The procedure used to obtain

Eq. (22) and (23) is analogous to that of Ref. 7. Further manipulation of

f depends on the type of pole being examined. The primary difference in

-"...
"L''• '•W; , ',. • , " % "' " . " '• W• • L" • . , ,,., •. ,. ,' " • ' ,' . . • ,, .. . ,, . . •.-, , _ .- , .
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further analysis is in the asymptotic expansions used for the RHei.al functions

in Eq. (23). For the Rayleigh and whispering gallery poles the Debye

expansions

exp[t- i(x 2-X )X2 1 iA arccos(X/x) ; if/4]
S(,)(x2 X2 ) 1 4  (24)

may be used since the poles are between x and -x in the X plane and

"1x"-xi >> (y) /3 (cf. Fig. 3, also Appendix A of Ref. 15 for a relevant

summary of asymptotic expansions). The Franz poles, however, are in a region

of the X plane where combination of asymptotic expansion. must be used (Ref.

7, Appendix A). Since our main interest is in the Rayleigh-wave form function

f R we particularize further analyses to that case. The whispering

gallery contributions to f 2 have the same form and interpretation as We Will

find forfR

"In rewriting fR the relation8

(cosirXý 21 7 exp(iir(2m+l)(X~ 1/2)) (25)

is useful. Also, for the near backscactering region (Iy'<<l rad) of most

interest to us, we can use the following approximation for the Legendre

function1 2 ' 1 3 ' 2 1 valid when jy<l<< rad, 1X1>)I, jRe,\I>>»IImA

AP - (cosy) = Jo(XZy) (26)

where 1O is the zeroth order Bessel function and the requirement

IReX >>IImXl has been verified numerically for the Rayleigh zeros of

aluminum, tungsten carbide, and fused silica. We assume jReXI»IjmAI for

the remainder of the analysis. Using .qs. (24-26) gives the following

approximation for the Rayleigh wave form function
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A' / /

AA

This figure shown the physical. pcture which ensues from the SWT

analysis of the Ryayleigh concribut.•ons LO scactaring. The incoming

plane wave represented by AB allovw the launching of a ,Uayla•.gn

surface wave at 3 which a.rcu.navigaces the sphere while reradiacing

back into che surroundings. At point 3' energy is radiaced in the

backward direccion.Fa ib the virturl point source from which ray A'3'

and the dashed rays to either side appear to originace. When the

diagram is rotated around tLe C'C aJ.Ls, '.he point F traces out a

virtual ring- .lke source.

Fis. 3.
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f -R -"R in0 JO(XRy) [ exp[i17r(2ml)(XR-½)] (27)
min0

where

"iA 47r (28)
R it U~

- 2[-((ka)2 2 212 + X cos-I 1 (29)

The Rayleigh pole satisfies the condition 0 < Re X < ka and it will
R

be nonvenient to define the parameters: R Im(XR), ka - Re(XR) and

OR a arcsin(k•k). We may then write

A - ' . (30)

and our assumption IReARIII•>> RI becomes Isi>>I. Using Eq. (30) in

"the eiponentials and y dependence of Eq. (27) and ignoring tearmE of OR )

and 0(0 /ka) we find that

f = -G J0(kbRY) a RR eR) Cn • a 2Tr (31)
m-O0

nR = -2 =6 Rose + kR (27r -2e.) - 7/2 (32)

where we define bR - a sineR. This expression for f may be incerpreted in

terms of a Rayleigh weve ceupled onto the sphere at a local angle of in, Ldence

e " This wave repeatedly circumnevigates the sphere while shedding energy

bai' into the liquid. Figure 5 illL,:.7aces the interpretation of f R The

ray AA' in Fig. 3 may be attributed to the m - 0 term of f R" AA' includes a

ray traversing the surface of the sphere from B to 1'. Hvidently k.k is the

- .. , , -.-. . -.. .. . . . . .. . ,', ".... .. - .-. ." • . " - ". .
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propagation constant of BB' and r is the phase delay of AA' relative to

a hypothetical ray following the path in water C'' -C' - C -'C' C- C'';

includes a 1T/2 phase advance due to the caustic at K. The exponential

decay *xp(-e (27r-26a) is due to continual reradiation of energy back into

the liquid; i.e., r'adiation damping. Reradiation at any point along B3'

occurs at angle 0 with respect to the normal to the sphere's surface at

that point. To understand the y dependence of the m-O term, one must

examine the dashed ca:,s to -ither side of A'B'. These dashed lines represent

ridiatioa slightly a,:, Eom backscasteriag. Tracing the dashed lines and

A'B' backward locates the point 7R from whici they appear to originate. The
spherical symmetry of the situ"tion thi ,i

1
,os thw tO•.,tOr 'f the figure

around the C'C axis in which case FR traces ou z. ritSg c-f :adius b . In

"Eq. (31) the Jo(kbRY) angular -'ependence tillowed f-ion," 3 WT; however, we

previously derived this radiat'on pattcrn of it tL al ring-like sources by

other methods of approximation.
14,16 18

The m > 0 contributions t(. fR art due to the continuation of the

;ay BE' around the sphere with r diztion in the backscattering direction

each time it arrives at 3'. The exp -ZtmRI term in Eq. (31) accounts for

radiation damping associated with m circumnavigations of the sphere. '.

factor exp(-im7) accounts for the phase advances due to caustica at C, -;.

K. The on-axis magnitude of the contrilucion to fR by the a:h term in Eq.

(31) is

-28t(1: - 0R) -27wrm
A IGRI "a (33)

This interpretation of the SWT is consistent with the analysis and

mcasurements of the axially-focused Rayleigh wave contributions to the

scattering presented in Ref. 14. The absence of a y-dependent phase factor in

4.. . . . . .. . . . .. .
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Eq. (31) indicates that the virtual focal circle lies in a plane which

contains the center of the sphere (see discussion below Eq. (37) of Ref. 17

for the case in which a - a) . This agrees with tha location given bya

geometric methods. The on-axis amplitudes were left unspecified in Ref. 14.

The SWT yields the following high-frequency approximation to the total

form function away from the forward direction

f = fs + fw + fR + f (34)
S tw R Z-WG ,F X Z

where the summation is over all whispering gallery and Franz poles. The f
'G

will be of the same form as Eq. (31) except that parameters are to be

calculated from the WG "

3.3 Experimental confirmation of Rayleigh backscateering amplitudes

In this section tungsten carbide spheres are used to test the Rayleigh

backscattering amplitudes of Eq. (33) foe the cases m - 0,1. We first

outline the methods used to obtain numerical results from Eq. (33). We then

briefly summarize the experimental procedure. Last, we compare analytical and

experimental results. The reader is referred to Refs. 14, 16, and 1 for a

description of the experimental apparatus.

The backacattering amplitudes Am of Eq. (33) are functions of ka.

As a first step in calculating A0 (ka) and A (ka) for tungsten carbide we

determined the Rayleigh pole's ka dependence. A computer program wai

frua 3 ,20developed based on the "winding number formula" t o find the complex

zeros of in Eq. (12). The program was used to find AR for a tungsten

carbide sphere for 25 values of ka between 19 < ka < 83. The ka values us.:.

and 'R valuss obtained are given in Table I. Also given in Table I are the

2aterial parameters used for the tungsven carbide sphere. The motivation for

the parti.cula%" ka values chosen in Table I comes from our previous work 1 4
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using Resonance Scattering Theory (RST). In RST one deals with the partial

wave series of Eq. (1) directly.8 In Ref. 14 we found the complex ka zeros of

D in Eq. (1) for integer values of a from n - 0 to n - 30. The ka

values used in Table 1 are the real parts of the complex ka zeros found in

Ref. 14. It is not necessary that the ka values be chosen in this manner;

howevAr, we have done so to facilitate discussion in a subsequent paper. The

quaucities Re * k.a and 1Ina 'R - were found as continuous functions

of ka by curve fitting the discrete values of Table 1.

The fitted curves for k a and facilitated the numerical
R ~ R faiiae th nuecl

evaluation of A0  and AI in the range 20 < ka < 80. The evaluation of G

in Eq. (28) requires the evaluation of Bessel functions of complex order (see

Eq. (A5)). The procedure used in this evaluation was based in part on the

"analysis given in Ref. 22.

Figure 6 gives a conceptual diagram of the apparatus used to test the

SwT predictions. A piston-like transducer produces a sinusoLdal tone burst 4

cycles in duration. This tone burst is scattered from either a 1.27 cm or

2.54 cm diameter tungsten carbide sphere. In this experiment the needle

hydrophone which picks up the resulting echo was set at y - 0; i.e., along

the backscattering axis. Figure 7 shows the structure of the backscattered

echo for the case ka - 49.1. The figure displays the amplified voltage from

the hydrophone averaged over repeated echoes. After the specular echo, the

14principal contributions are the Rayleigh echoes. The frequency of the

incident burst could be varied from 800 kHz up to 1.5 mfiz. The corresponding

rang% of accessible ka is from 25 to 80.

The experimental procedure was to measure the peak-to-peak voltage of

the central cycle for each echo structure of interest, Thase voltages will be

denignated as V for the specular echo and as V for the first (m - 0) and
S M
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second (m - 1) Rayleigh echoes. The voltage measurements were made on the

averaged echo from 256 bursts. An absolute calibration of the apparatus would

require that signal attenuation associated with propagation through the water

be accounted for. Instead of absolute scattering amplitudes, we will concern

ourselves with the Rayleigh echo amplitudes relative to that of the specular

reflection for the particular value of ka under consideration; these will be

designated as ROE - V0/V and RIE , V /VS.

In order to compare RO and R1E with the SWT prediction for the A0

and A1 , it was necessary to also evaluate the SWT predictions for the

specular amplitude at Y - 0 as a function of ka. The required contribution to

the form function is IR5 I with X5 m 0; see Eqs. (20) and (AS). we

designate this quantity as RST' Evaluation of Eq. (A8) shows that as ka

increases from 18 to 83" IT increases monotonically and approaches the

specular reflection amplitude for a plane tungsten-carbide water interface,

IRp I - 0.9693 from Eq. (21). At ka - 20, RST was only 0.1% below IRp I.

Since RST varies by only about 0.1% in the ka region of interest, the

theoretical echo amplitude ratios ROT - A /RST and RfT - A1!RST are

dominated by the ka dependences of A0 and A . These ratios are plotted as

the solid line in Fig. 8 together with the experimental amplitude ratios ROE

and R IE The general agreement appears to confirm the predictions of

Eq. (33).

A couple of comments on the relation between the earperimental and

theoretical results are in order. First, the theoretical prediction uses

material parameters from Ref. 11 since the elascic parameters of the actual

spheres used could not be determined. The material parameters. of the spheres

used in the experiment may be slightly differenc. For example, thi donsities

3 3of the spheres used were measured to be 14.25 gm/cm and 14.95 gm/cm for the

F.'._.,°.'..-.. .-.- -... .-,-..._ •.-..-.- .,. -.,,•,'-.-.. -.-...- .-.-,-...-,.•••'.' '. ' .•., .
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large and small spheres respectively. This may account for some of the

difference between eaperiment and theory. Second, the SWT analysis is a

steady state method. In the experiment, however, pulses must be used so that

the Rayleigh contributions can be isolated in time. The validity of applying

a steady-state analysis to experiments of the type described above has been

examined 1 6 ' 2 3 in connection with waves transmitted within the sphere. It was

found that though focused tone bursts could be distorted, the peak-to-peak

amplitude of the central cycle of a four-cycle burst should be well

approximated by that of a steady state analysis. It is anticipated chat a

detailed analysis of the shapes of transient Rayleigh echoes would lead to

similar conclusions.

It should also be noted that the receiver hydrophones were not always

in the far-zone of the scattering. For example, in the far-zone condition

r >> ka 2, a - 1.27 ca and ka - 50 gives ka2 - 63.5 cm. Fortunately, however,

this is not a serious drawback. This is because the ratios of Rayleigh and

specular echo amplitudes should be well approximated by IAaI/RST for

k2distances much closer than the condition r >> ka . The radiation from a

virtual ring-like source of radius bR is modeled in Section V of Ref. 16 for

the region r >> bR (kbR/2)/3 =- r., the Fresnel region. This analysis nay

be applied to Rayleigh echoes in the present problem since these appear to

originate from virtual ring-like sources; ka - 50 and a - 1.27 am correspond

to kb = 18 and r 20.7 cm. The measurements were taken with

r - a + z = 33 cm. The near-field corrections required to prsdic:t. trxh fý,'-

field amplitude ratios from the conditions of this measurement.r,. ew~c~rd

to be < 2%.
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3.4 Dircussion

As was noted in Section II, the theoretical amplitude ratios ROT and

SRIT plotted in Fig. 8 have dependences on ka which are dominated by the

Rayleigh echo amplitudes A0 and t; the R MT may be approximated to within

0.1% by A /0.9693. The qualitative features of these plots may be understood

14as follows. We have previously demonstrated that the Rayleigh echoes are an

example of axially focused scattering. Consequently, it is to be anticipated

that over a range of 1ca (consistent with the phase matching condition1 4 ), the

amplitude coupling factor, G in Eq. (38), increases with kc. Thus A0 and

A, are expected to increase with ka until the exponential factors in Eq. (33)

are dominant. For tungsten carbide the damping parameter B also increases

with ka. The dominance of radiation damping is evident in the plot of R

for ka > 40. The effects of damping are more significant in AI than in A0

since A,* A0 exp(-27Tr).

The qualitative features mentioned above are clearly evident in the

data. Some discussion of the discrepancios between observation and theory are

in order. As notad in Sec. II, one plausible cause of error was the use of

tabulated elastic parameters for tungsten carbide instead of the unknown

parameters for the actual sphere studied. (There is other evidence that the

parameters may depend on the manufacturing process of the tungsten carbide.)

The differences between R0E for the large and small spheres in the region of

ovezlapping data (ka close to 45) is suggestive of the magnitude of systematic

experimental uncertainties.

A further source of discrepancy may be inferred from the structure of

the data. The deviation from the thsoretical curve is not random but seems to

have a structure (especially ROE for 50 < ka < 80). This is suggestive of

possible interference of the Rayleigh wave with other small amplitude waves.
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We have used the methods of Ref. 16-18 to find the amplitudes and times of the

transmitted wave contributions. The most significant transmitted wave

contributions have amplitudes which are between 0.1 and 0.15 times that of the

specular reflection and are delayed by about 17.5 and 32.7 usec relative to

the specular reflection. The timing suggests these waves may be in part

responsible for the two left most pulses labeled C in Fig. 7. The largest

amplitude transmitted wave in the time windows of the first two Rayleigh

contributions had an amplitude of about .07 times the specular reflection and

could be a source of the structure of Fig. 8.

A related source of error may be the omission of whispering gallery

waves. As noted earlier, the analysis of Sec. I1 for Rayleigh waves is also

applicable to whispering gallery waves. We have not carried out the somewhat

tedious computation of the whispering gallery amplitudes for tungsten carbide

since an alternate analysis suggests their amplitudes are small in the ka

region of the experiment. This alternate analysis involves approximating the

exact total zorm function f for a tungsten carbide sphere by f a f + fLU T A S It'

see Eq. (34). We have compared IfA I with If IT computed using the PWSI1

and find that if AI correctly reproduces If TI except for a fine structure

(superimposed on If A) due to whispering gallery waves or other waves.

Besides suggesting the whispering gallery contributions are small, this

comparison is relevant to the interpretation of resonance scattering theory

and a detailed discussion is beyond the scope of the present paper.

Another possible source of the experimental and theoretical

differences as well as differences between the overlapping data for the two

S..spheres is the sphera mounting system. Considerable time and effort was spent

"finding a mounting system which had a minimum effect on the scattering

-experiment. Even with this one must assume that the effect of the mounting

"4



83

varied between the two spheres and had an impact on the attenuation 4 the

Rayleigh waves at least locally in the region of contact between sphere and

mount.

Finally, it is important to remember that below Eq. (4) we separated

the pressure into contributions PI and P 11 , The analysis after Eq. (4)

concentrated on P1 . P 1  is known as the background pressure 3, and has been

shown to be negligible in the fluid-loaded cylinder case. The comparison of

IfA Iand IfTI discussed above implies PIi is small for tungsten carbide

spheres. However, one cannot discount a priori the possibility of P

contributions being responsible for part of the difference between experiment

and theory. P? is also important when interpreting f of Eq. (10): f

must be interpreted as a high frequency approximation to f which excludes
T

the contribution from P1 1.

We have, within the limitations discussed in Sec. I, performed a S4T

on a fluid-loaded elastic sphere. We paid particular attention to the

specular reflection and Rayleigh contributions. Further, subject to the

discussions in Sec. II and this section, we have experimentally tested the SWT

prediction, Eq. (33), for the amplitude of the first two Rayleigh

contributions to backscattering. The general agreement between experiment and

theory appears to confirm this particular SWT result. The Bessel function

angular dependence given by the SWT (cf. Eq. (31)) was nxperimentall7 confirmed

in previous work.1 It may be shown :hat kb y is equivalent to the arguent

of J which was predicted and confirmed in Ref. 14.
0
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Appendix A

In this appendix we give the elements of the 3x3 determinants B

and Dn of Eq. (1). We also manipulate the ratio B V/D (where v - - 1/2)

to obtain the results used in Eqs. (12) and (20).

From Raf. 11 we have that

_ 2 (x) n n

ad 1 2  d1 3

B x xJU(X) d adn(l
n 22 23 (Al)

a n
d32 d33

x2 h( z) n n

s n 12 13

(X hl)ix) Wda n (A2)
Sa -22 d2 3

n nd32 d33

n 2
d - (2n(,+.) - x ]i (x.L) 4 x J'(xL)

12 a

-~ "2n(n+l)(xS J. (xs)],

13S

d n -(X) n n(nxl)j (xS) (A3)122 23 "(n Jn , x23

d3 -2 x (XS) + 2x - 2n(n+l) + 2] (x

33 x5 in 5  ax i(S)

In these expressions j and h are spherical Bessel and Hankel functionpn a

respectively. The primes denote differentiation with respect to the argument.

The definitions of all other variables are as listed below Eq. (1) with the

additional definition that - 10

.- . . ... . ... .. . ..-.- . . . . . ..-.. ..-. ..-.-. ..-.-. .- . , . ,.,- .-.- .. - , ,. .. .. . , . . . .,-.. .",. •

-. - .* .. - -. 4 - *4 * . . *4 *.o
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The expression B /D is given by the ratio of Eq. (Al) and (A2) with

24 W /[(1). ) (2) Wn replaced by V. By using the relations u 112[h 1x) + h 2(x)V

and h(1,2)(x) - (w/2x)1/2 H(1 ' 2 )(x) one can rewrite the ratio B /D as

B;•ID, - - II(1. l• -(x)• • (A.4)
H~ (2) ID

V 1,2 (

where

2 V V V V V V IV
q - x 3(d22d3 -d 3 2d 2 3/(d 1 2d 3 3 - d3 2 d1 3 )

(A6)
,_(i), .. .Wi

- ,

Equation (AS) is a convenient form for residue analysis leading to Eq. (22) and

(23). However, for the saddle point analysis of Section 1,2 must be

rewritten. The object of developing an alternate expression for 2u/• is

to separate ouc a term which redqces (in the limit ka t o) to the reflect~.on

coefficient of a plane solid, liquid interface. A related analysis was carried

4out by Brill for the cylindrical case. Following Section II of Ref. 4 one

can rewrite (after considerable algebra) as

/ V R 5X - X (A7)

lsA - (z2 B2 2 + 5A 2 2 )/(z 1 B2 2 + aA2 2 ) (A8)

- ) A Y -BY
2 1... 2l+(1  2 ~ 2  )I B22 1 A2 )

"1'1I2+ 22 2 2) 1 2 1 / 22 22

.W -
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Aij ,, Z.[ ls + i,)/(2x2 ) 1/41 v(v'1)/(2x 2
jj 'iLIZj a1 3

B - v(~) _ 31(2 x)- 1/41 + 2v(v+l) /X v+)/2 4 jý2..

[(+/X4 _2x4 _/X2 + [, ~ l/ 4 2x4
U/i s/5  ziSzLLvV+)/s - /x

Y - A127YL + A2 1 yS + AJI'YLYS

Y2 " B12YL + B217S + B117LYS

a h ')(xA)/hv (x)A), Z ZA " XA h•()'(xA)/hV (xA)

where A - L or S. The significance of Eq. (A.8) is discussed after Eq. (20)

and in Appendix D.

:.°ý.- 4 I°~

-. . . . . . p* * I f4. * t .I J A 4 '.I. .. 4 4s * t* *
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Appendix B

In this appendix we want to show. that the integrals

p(1, 2,3) -- *v P() s d_ (_l)

v cosir'

(1,2,3)

are negligible. r. 1' 2' 3 ) are the three contours at infinity shown in Fig. 3

and C',- D J (kr) + h(I )(kr). We first examine BI/D in the limit

l l -• •. To examine B /Dv we use the relations

jv(x) - (?/2x)1/2 JX(x) , (v -X - 1/2) (B2)

hM) (x) - (r/2x) 1 U2  (x) (B3)

between spherical and. cylindrical functions and the result from Eq. (A6) of

Ref. 15 that

J(x) (27rA) /2(ex/2A) as " (B4)

where a - (2.718 . . .). From Eq. (B2) and (B4) it follows that

J, (x)
, as X (B5)J (x) x

where the prime denotes differentiation with respect to x. This result can

be used in the of Eq. (A6) to find their limiting values as jIX

Using these limiting d values we find that (d2 3 d3 3 - d32 d33 ) -" 0 as

I •". Finally, substituting this last result into Eqs. (A4) and (A5) we

find

B j'(x)V * asn (B4)

" fo l v ri (inh (x)

for all regions in the complex X plane.
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Using Eq. (B2), (B3), (B4) and Fig. 15 of Ref. 15 one can also show
h ~x )/h(1) (1)'

that J(x)/h W -(x) Jx)/H ) W as X, . This and Eq. (32) and

(B3) allow us to write

Tkr L ,(x,1)' 4~Jd 1

(l,23) 2,3-iw/4 ;___ __= M W) (d~X (B5)
r(1,2,3) 2rH() X

where

L,(x,kr) - x Wx J,(kr) -J'(x)H~ (kr)

HX(P) - xj.() e xp(-irA/2)

Now, using Appendix A of Ref. 15 along with Eq. (2.21) and (2.24) of the same

reference and the substitution X - R exp(io) one can establish on the con-

tours r(1,2,3)= (where R t •) that: Lx and HX behave no worse than

exp(R), and )' behaves as exp(R.ZR). Thus the integrand in Eq. (B5)

vanishes on r(1,2,3) and therefore P(1,2, 3 ) . 0. In establishing this

behavior it is important to note that the curve h 2  in Fig. 3 is the curve

along which the zeros of a 2 )(x) .- e located. 1 5

. . . .. , ... .o . . . . .. .t.... ... . .. .
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Appendix C

In this appendix we examine the integral

t

p -i 137r/~4 F (X,x) h~l)(kr) (1)(cose)e iWX/2 dX (Cl)

where the contour r M Is the portion of r's in Fig. 4 which goes through the

right hand saddle point. In identifying r Mthe definition of r L below

Eq. (19) was used. We show, using the saddle point method, t:hat Eq. (Cl)

represents the contribution to p1 (cf. Eq. 14) from the Incident plane wave.

To evaluate Eq. (Cl) we must first find the saddle point location. To

do so we rewrite the integrand of Eq. (Cl) in a form valid when x < ReX < kr

(specifically part of region A in Fig. 15 of Ref. 15). In this region we can

use the relation (Appendix A of Ref. 15)

R (2) W - a() (x) (C2)

This relation, Eq. (A5) and (A6), and the definition F2 (X,x) -

ýH (g H (~ allows one to show that 1. and

F2 (X,x) ' - A (C3)

Also, when X >>. 1, e < < r - E, A1I >> 1 we can use the relation 1

Q(1 )(cos6) expf-.(Xe - T'/4)]' (Csa 1/2 -•(C4)
(27•Asin8)O)

We return briefly to the requirement AXle >> 1 at the and of this appendix.

The requirement I » >> I is fulfilled in the region ReX > x since at the

outset of the paper we assumed x >> 1. Finally, since we are examining the

region where ReA < kr, we can rewrite h(I) (kr) using Eq. (B3) and (24).V



90

With these results and the change of variables X - kr sinw, pinc becomes

rv

S(w) = e-i"rl [cr siaw cosw/2Tr sinS]1/2

where s(w) - i(1(r- B)sinw + cosw - (11V - w)sinw] and r' is the trans-
H

formed contour of r' which passes through the saddle point w a w . One
20,25

can evaluate Eq. (C0) using the saddle point method. 2 0 ' 2 5 We find the saddle

point at w. 8 (X3 - kr sin6) which gives a value for pinc of

n eikr s(ws) ] -2Tr .1/2
Pinc a kr s"'(w S(Ws) (C6)

2 2where s''(w ) is d s/dw evaluated at w a w . The right side reduces to

exp(ikz) which corresponds to the incident plane wave as required.

The condition that Eq. (C4) is applicable at the saddle point is

"I xj£ - kr sin6 >> 1. Consequently, for points close to the backscattering

axis, 9 close to 7, this proof is only strictly valid for large values of

.. kr.

S. * . . . . . . . .... .
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Appendix D

In this appendix we use the saddle point method to approximate the

integral

f R H. (x) (co1e) (D1)

S U 3 SX Hs (1) (x V ceGd
r L"L

where the contour rL is that portion of rt in Fig. 4 which passes through

the left hand saddle point.

The saddle point analysis is similar to that carried out in Appendix C.

"To find the saddle point location we rewrite the integral in a form valid when

- x < ReX < x and Ix - x1 >> (X) 1 /3. In this region we can use the Debye

expansions of Eq. (24). This gives

"H x2) (x)

i exp(2i(-(x - A2)1/2 + X arccos X/x)] (D2)

H'(x)

We can also use Eq. (C4) for Q(1)(cose) under the restrictions that >! >> 1,

""< _ < r - E, AXIe >> 1. Equations (C4) and (D2) and the substitution

ka sinw allow Eq. (Dl) to be rewritten as

"fs T= T(w) a ) dw (D3)
; rL

iTT! 4 1/2T(w) a - e S cosw (2ka sinw/Trsine)

where t(w) - i[-2 cosw + (7 - 2w)sinw - esinw] and r' is the transformed

contour of rL which passes through the saddle point w - ws. In writing

Eq. (D3) use was made of the result that RSA as given in Eq. (A8) will

.oA
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contain no exponentials and is a slowly varying function of X. Since

ka >> 1 the integral can be evaluated via the saddle point method. 20 ' 25 In

terms of the backscattering angle y - r- , the saddle point is at w -'y/2s

for which X - ka sinw - X . The approximation of the integral in Eq. (D3)
S S

is given by the right side of Eq. (C6) with s, r, and S replaced by t, a,

and T, respectively; the resulting approximation for fs is given by Eq. (20).

• , .. ".t.", .. "-".'.: " . . "-:',. ,,. . .,. '-J '-. . .i. "•.";., '• :/ -".;. ; .2:•"2.".; ' i," :
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Chapter 4

RESONANCE SCATTERIbG THEORY REVISITED VIA THE SOMIERFELD-WATSON

TRANSFORYATrION FOR SCATTERING FROM SPHERES
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"* 4.1 Introduction

Resonance Scattering Theory (RST) originated from the application of

nuclear scattering theory to classical scattering problems. 1' 2 It has been

used in addressing a number of different scattering situations. (Reference 2

discusses several specific problems which have been examined via RST).

Because of these applications of RST an examination of the limitations of some

of the basic concepts of RST is justified. We stress at the outset that these

limitations do not affect the validity of most results obtained with RST but

they do affect interpretation of these results.

RST achieves a separation between rapidly varying "resonance" portions

of scattered signals and a slowly varying background. In particular, for an

acoustical plane wave scattered from fluid-loaded elastic bodies such as

spheres3 or cylinders, RST has been used to interpret the rapid fluctuations

in the backscattered pressure as the ka of the bodies are varied (where k is

the wave number of the acoustical plane wave in the fluid and a is the

radius of the sphere). One of the important numerical tasks in RST is to find

the complex "resonance" ka values which locate poles of the scattering

amplitude. Two basic RST ideas are then used in interpreting scattered

3.pressures. For a sphere these ideas translate into the following statements

(a) each of the many resonance ka's can be labeled with the integers n and

th th
Z and at the (n,Z) resonance n + (1/2) wavelengths of the Z surface

wave fit onto the circumference of the sphere, (b) that any rapid fluctuation

in the scattered pressure is due to the in-phase adding of a specific sur face

wave and these fluctuations are thus associated in a simple fashion with the

set of modal resonances of the target. Two of the major goals of this paper

are to examine the limitations of these ideas.

.-. ..- :
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Our examination uses the particular problem of an acoustical plane

wave scattered from a fluid-loaded elastic sphere. We use a recently

completed5 Sommerfeld-Watson transform (SWT) analysis as an aid in

investigating RST. The SWT allows separation of the contributions to

scattering from reflected waves, transmitted bulk waves, and surfice waves.

Section I contains an examination of the relation between the

resonance ka's and the rapid fluctuations in the backscattering form function

of an elastic sphere. To perform the examination we use the case of

backscattering from a tungsten carbide sphere with 10 < ka < 80. We

approximate the exact partial wave series (PWS) solution for the

backscattering form function of the tungstan carbide sphere by using a portion

of the SWT results. This process allows a check of the SWT. Once checked the

SWT results are useful in understanding the relation between resonance ka's

and the backscattering form function fluctuations.

Throughout the paper we define physical resonances as the real ka

values for which an integer plus one-half wavelengths of any surface wave fit

on the sphere. In Section I we assume that the real part of the RST

resonances give the physical resonance values of the sphere. In Section 1I we

show that these RST results actually only approximate the physical resonance

values. The error inherent in this RST approximation is small enough for

tungsten carbide that it has no effect on the discussion of Section I. We

conclude in Section II that, when one approximates the physical resonance

values by using RST results, the numerical and conceptual significance of the

approximation should be understood and related to the problem at hand.

A special note on notation is appropriate. In past RST work the

parameter Z was an integer where £ - I for the Rayleigh surface wave and

2
2.- 2,3, etc. for whispering gallery surface waves." In previous SWT analyses
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t. took on the value Z.- R for the Rayleigh wave and Z- WGI, WG2, etc. for

whispering gallery waves.5 Throughout this paper we shall use both the RST

and SWT definition of 4 and imply from the previous work that Z - 1 is

equivalent to X - R and Z - 2 is equivalent to 9•. • for tungsten

"carbide spheres.

4.2 The backscattering form function via SWT and RST

"In this section we discuss the relation between the resonances of RST

and fluctuations in the magnitude of the backacattering form function of a

fluid loaded elastic body as ka is varied. This relation is examined through

the specific case of backscattering from a tungsten carbide sphere in water.

Section IA is devoted to comparing the PWS with the SWT approximations for the

backscattering form function of the tungsten carbide sphere. 3 ' 5 ' 6 Besides

this comparison several intermediate SWT results are discussed. Some of these

intermediate results introduce terminology and ideas useful in Section IB.

Section IA serves the dual purpose of partially checking the SWT of Ref. 5 and

laying the groundwork for the discussion of RST and form function fluctuations

in Section 1B. A comment is appropriate on the computer programs used in

generating many of the figures of this section. In evaluating SWT results, we

-* use subroutines which calculate Bessel functio;:s of complex order and argument

(see Ref. 5 for further discussion of subroutines). These subroutines have an

error of less than (0.00001 + iO.00001) when the modulus of the Bessel

"function order lvi is greater than 3. With Mi < 3 the error increases

rapidly. SWT results for the tungsten carbide sphere below ka - 20 are

"affected by this inaccuracy. In some figures SWT results below ka - 20 are

plotted since the qualitative features agree with PWS results even though

quantitative accuracy cannot be assured. The PWS calculations have no such

limitations. The maximum ka range plotted for SWT results is 10 < ka < 80 and

- . . . . - . .
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for PWS results is I < ka < 80. The methods used to obtain SWT results are

similar to those discussed in Ref. 5. The material parameters used for

tungsten carbide were: density - 13.80 g/cm 3, longitudinal wave

speed - 6.860 x 10 o-/s, sheer wave speed - 4.185 x 105 c/s. Those for

water were: density I 1 g/c 3, longitudinal wave speed - 1.4760 x 10 5 n/s.

A. PWS and SWT form functions

When a plane acoustic wave is scattered from a fluid-loaded elastic

sphere and we use the coordinate system shown in Fig. I the total pressure in

the far field of a fluid-loaded sphere can be written as the real part of 3 ' 5

ikr
PT(x,e) - aikz a2--* f(x,9) (1)

where x -ka. On the right-hand-side the first term represents a unit

amplitude incident plane wave and the second term the scattered pressure. The

"f in this expression is a form function descriptive of scattering when
S~r >> ka2

The PWS backscattering form function f(x,-r) fPWS(x,Tr) is 3

f~ws 3(x)
""W D W (2)

n0O n

where B and D are 3 x 3 determinants given in Ref. 3. The complex
n n

resonances of RST fulfill the condition D ((Xn) * 0. It is important for the

discussion in Section 1I to note that the RST resonances (the x ) are

"located" in a complex x plane. The value x corresponds to a Rayleigh
th

resonance of the n term of Eq. (2) while the values x g. with Z > 2

thcorrespond to any of the many whispering gallery resonances of the n term.

In the RST of a sphere3,7 it is asserted that when the ka of the sphere equals

". " ' ", .- '-.'-.' . - 2 .- '- . , • *' _ .' . - . .' .'. '. '.. '.. -.. " "..* . -.'.. W ' .. " - . -." .." .. * *" • .•• -.- o• ' ' ' ' ' ' .. ..-. - -"•"t, "" J -°"- % ","".', "" J ",""J%"• ,' '''''• '" '' .' "- •" .•' '• •" ", ,' ". * * - -. "- tp w ' C .."" . *5 ". .' '' '.
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Re(x u) then n + (1/2) wavelengths of the Z.h surface wave fit on the

sphere.

The SWT may be used to find an alternate representation for f. In

the SWT one rewrites the PWS for the total pressure in terms of a contour

integral in a complex v plans. The contour used can be deformed to surround

complex poles whose residues given the contribution from Franz, Rayleigh, and

whispering gallery waves. Furthermore, the contour passes through saddle

"points whose evaluation gives contributions from specular reflection and

transmitted bulk waves. Alter a considerable effort one can write the far

field pressure as shown in Eq. (1) with f a fSWT where ka >> I and fSWT

can be separated into the sum of several contributions. Rers we consider

only the contributions from the specular reflection, Rayleigh wave, and the

slowest whispering gallery wave which we label fS9 fR' f.., respectively.

The analysis of Ref. 5 gives the essential details of the derivation,

interpretation, and numerical implementation of the results for f f fWG"

We will only briefly summarize their form for the case 6 - r; i.e.,

backscattering.

When 6 Tr the specular reflection contribution f has the form
.S

f -s(x,7) - RS(OsO)(x) ei2x (3)

where R is the coefficient of reflection from the front of the sphere and
S

"(-2x) is the phase of the specular reflection relative to a ray traveling in

"the liquid to and from a reference point corresponding to the spheres center.

The full expression for RSX , which was used in the calculations, is derived
S

in Appendix A of Ref. 5.

The contributions fR and fWG1 are found from a residue analysis

"using the Rayleigh pole v• and the appropriate whispering gallery pole
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V WGI* The expressions for fR and f have the same form and at 0 -

they become
sin,. -2 ('n-a dz)-ml 12rn(a,+ý) -2rmSl zft.(x,7') - -G 0 • •"L• 0 (4)

L M-0

where Z equals R or W01 for the Rayleigh or whispering gallery

contribution and we have used the substitution V ( z,+ iV" We note that

ez, r1I, O* aZ, • Z are all functions of x and that f i is actually the

appropriate form for any whispering gallery contribution to fsT* Equation

(4) can be interpreted in terms of surface waves in which case the variables

and sumation have the following physical significance : G is a complex

amplitude factor that accounts for the coupling efficiency of the 4ch

surface wave onto the sphere as well as the effect of axial focusing, 6 is

the local angle of incidence where the surface wave and incident acoustic wave

are phase matched, the terms exp(in) and exp(-2(ii--0z)S1 ] are the phase

delay (relative to the same reference wave as used for Eq. (3)) and

attenuation due to radiation damping the first time the wave radiates energy

in the backscattering direction, the sum over m accounts for the surface

"wave circumnavigating the sphere an infinite number of times, the

exp(i2Trm(a + ½)] and exp(-!rm8] are the propagation phase delay and

attenuation of the surface wave for m circumnavigations the sphere, the

exp(-im7r] accounts for phase shifts due to caustics at a - 0 and 0 - Tr.

We note for future reference that the results above show that the propagation

phase delay for one complete trip around the sphere is exp(i2rr( z 4 )].

This implies that a is related to the number of cycles of the surface wave

which fit on the sphere. For instance if the value of x is such that a
%z

equals an integer n then n + (1/2) cycles of the surface wave would fit on

the sphere. Explicit expressions for G and n can be found in Ref. 5.

-.-- '----
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By inspecting Eq. (4) one can see that the backacattering amplitude of

th th
the d term of the 2h surface wave is

AM92 IGZ. a -2 O"6 t da a-27rmS 21 5

The ability to calculate the coupling efficiencies G and backscattering

amplitudes A3a12  can prove useful in tvansient scattering situations where

one may want to determine the physical origin of various echoes seen in the

5,9scattered return. The coupling efficencies may also be useful in

investigating more complex shapes such as cylinders with hemispherical

endcaps. With these types of applications in mind Figure 2 gives IGrR,

IGWGI1, AOR. AO,WGl for a tungsten carbide sphere. Throughout the ka range

of Fig. 2, JfSJ = 0.9693 (see Ref. 5) and comparison with AO,R from Fig. 2

suggests that f will strongly influence the total form function. This

supposition proves to be correct in what follows.

An alternate expression for f , (x,ir) can be found by applying a
10,11

relation used in the analysis of optical Fabry-Perot resonators

m-Z Z

M,0 O -

Using Eq. (6) we can write Eq. (4) as

f 2 . (x7r) - -G. ax~p(-2(1T-G2.)82 + in.](7
f,(Xr) (1+ expf-21ra2 + 12wr(a 2 + ½)I}(7

This closed-form result is more convenient for steady state computations.

Examination of the form of Eq. (7) shows that if the x value of the sphere

is such that Re v a-. equals n (where n is an integer) the magnitude of

the denominator is close to a minimum and we have a resonance type behavior.

We have discussed previously the idea that when a - n we have n + (1/2)

• "-;'-.'.•'>-..-.. .'.",,',,.." % ".",.,":,•:,• '• :.":';"i ; .-'.":.-.. -q .% \ '-':.'-" -. '.-:''.''-''.'.-".:-..'-.',:'-•'.''.''..',-.'-'.':-.
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The Rayleigh and Slowest whispering gallery coofficiants G, and

G,(,for coupling onto a tungsten carbide sphere are shown (cf. Eq.
4). A.so shown are the backscattering amplitudes A and A

OR O,WJG1
f or the first time the Rayleigh and whispering ga.Ller7 javes return

energy (cf. Eq. (3)). The different scales needed in this plot are
an indication of tho much larger cou~pling and backscattered amplitude

of the Rayleigh wave in the case of a tungsten carbide sphere.

Fig. 2.

". " . .
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cycles of the Zth surface wave on the sphere; i.e., a physical resonance as

defined in the introduction. One way to understand the resonance when

n + (1/2) cycles fit on the sphere is through the use of Eq. (4). Each time

the surface wave completes a trip around the sphere (each of the individual

terms in sum of Eq. (4)) it is in phase with contributions from previous

circumnavigations (the other terms of the sum). In phase addition occurs when

n + (1/2) cycles fit on the sphere instead of n as would be the case for a

cylinder 2 because of the phase advance due to caustics at e - 0 and e a r.

To see the resonance behavior of Eq. (7) we have plotted If R(xv)I for a

tungsten carbide sphere in Fig. 3. The resonance behavior is clearly evident.

We have also plotted as vertical dotted lines the real part of the RST

Rayleigh resonances Re(x ) for 5 < n < 28. The values of Re(x ) were
al ni

taken from Table I of Ref. 9. The RST concept of n + (1/2) cycles of the Zh

surface wave fitting on the sphere when the ka of the sphere equals Re(xI)

is confirmed to within the resolution of this figure. Indeed we will show in

Section II that the approximation inherent in the use of this concept is not

detectable in any of the figures of this section for the particular case at

hand. Therefore, for the remainder of this section we use the Re(x ) to

indicate when n + (1/2) cycles of the Rayleigh wave fit on the tungsten

carbide sphere.

The results to this point can now be used to obtain curves for the

magnitude of the bMckscattering form function of a tungsten carbide sphere

immersed in water as a function of ka. The PWS result for If PWS(x,'r) fb

"was calculated using computer programs referenced in previous work. 6  We first

compare fb with a ST result using only the specular reflection and Rayleigh

contributions to f and given by ifs(xTr) + f (x,r)• I f. FigureSR

shows f in the range I < ka < 80 and f in the range 10 < ka < 80.
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The absolute value of the UayIoigh Contribution f to the

backacattering form function f~a~)of a tungsten carbide jpherm

Ls 3shown. A~lso indiCAted 48 vertical lines are Cho UST Rayleigh

resonances Re(% a ) for 5 < a < 28. The value of a for each

resonance is given at the top of the figure. One laoteu that waithin

the resolution of this graph If f I has a peak at ka le(z a).

?ig. 3.
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zn this figure f b is the absoluce value of Che backucacltering form

function for a tungsten carbide sphere as ca.lculated aging the PWS

""and f SR is an approximation to fb obtained using tho SWT results

for the specular reflection and Rayleigh surface wave contributions

to backscattering. The vertical scale for f has been shifted
SR

"since the two curves are not ea"ily discinguished ocherwise.

Fi.4.
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We have offset fSR vertically since when the curves are superimposed they

cannot be easily distinguished. In Fig. 5 the ka scale has been expanded and

fb and f are shown without offset. This facilitates a better view of the
bSR

agreement between the two curves which is typical throughout the range

10 < ka < 80. These figures show that fSR correctly reproduces fb except

SRf or a fine structure (superimposed on far) due to other waves.

Though fSR is the ftnal result needed for the discussion of Section

tIB it is appropriate to further test the SWT results of Ref. 5 by adding in

the contribution from the slowest whispering gallery wave. The addition of

this wave gives an approximation IfS(x,71) + fR(x,,r) + f wGl(X,)I = fSRWG"

Figures 6 and 7 show fb and fSRWG" From these figures one sees that some

of the fine structure absent from f has been recaptured. The increased
SR

agreement is especially obvious in Fig. 7. Presumably the rest of the fine

structure could be obtained by adding in contributions from other whispering

gallery waves. This method of adding one surface wave at a time to the

approximate form function allows one to ascertain the effect of each surface

wave by inspection.

It is appropr'ate to make some further comments on these results. One

can understand the why GR is approximately linear in ka over the range

displayed in Fig. 2 by the following argument. The ka dependence results from

the product of two factors. One factor is proportional to Vk because of

axial focusing. 12  The other /Y- factor can be attributed to the increased

coupling efficiency of surface waves with incrtase of ka. This last VI?

factor can be obtained usirg energy conservation arguments similar to those oE

Ref. 13. One can fitd" this /-k factor due to increased coupling efficiency

in cylindrical SWT results. Casting the SWr for aylinders in a form similar

to that for spheres givis a coupling factor for Rayleigh waves with a form
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Shown an an expanded' scale is part of if and f from Fig. 4. tn

this figure the vertical salte of if SRis no locnger offset. This

figure allows one to better wxaine the agreement between if band

f which is typical throughout the region 10 < ka < 80.

Fig. 5.
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This figure is similar to Fig. 4 except chat fSRWG includes the

contributions to backncac:eri.ng from the slowest whispering gallery

wave as vell as the concribucions from specular reflection and the

Rayleigh wave included in f SR The inclusion af the whispering

galler• wave in fS1 l adds some fine structure to f thus living

better *greement wic i fv 1j

Fig. 6.
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Shown on an expanded scale is part of f b and ft5RWG from Fig. 6

but without vertical scale offset. As in Fig. 5 this -Illows a better

view of the agreanc beveaen f and the SIM result.
b

fig.
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like GR but divided by Na due to the fact there is no axial focusing.

Thia implies an approximate Y¶i dependence for the cylindrical counterpart

to G The surface wave's phase velocity dispersion may alter this ka

dependency for coupling efficiency. The above argUencs are therefore only

valid in ka regions where the surface wave of interest is weakly dispersive.

Finally we should discuss why our synthesis of fb in Figs. 6 and 7

works as well as it does. it was not necessary to include transmitted bulk

waves such as those described in Wef. 12 for a fused silica sphere. Th7is is

because for tung..ten carbide, the contributions due to transmitted waves are

estimated to be negligible in comparison to those due to specular reflection,

the Rayleigh wave, and the leading whispering gallery waves near resonance in

the ka region of interest. 8  It is significant in this regard that the density

of tungsten carbide is much greater than that of water.

The reformulation of the m series of Eq. (4) .into the closed form of

Eq. (7) is similar, in principle, to Felsen's "Hybrid Synthesls' technique.1

The form of Eq. (4) is useful for transient analysis". while that of Eq. (7) is

more conveuient for describing the steady state scatterinC.

B. Interpreting RST using fSR

The physical nature of f is relatively simple. The discussion of

this section elucidates the physical interactions which produce the structure

of f S and in doing so allows an excellent opportunity for examining RST.

The main topics of discussion in this section are the significance of the

phase between the specular reflection and first Rayleigh wave contribution in

determining the structure of f and the relation between the Rayleigh
SR

resonances zl of RST and the maxima and minima of f$SR

The phase between the specular reflection and the first Rayleigh

contribution can be detarmined from Eq. (3) and the m - 0 term of Eq. (4) to
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be n 2x + n. + arg(GR. where arg(G ) is defined as arctanCTmGP•P/ReG R).

In Figs. 8 and 9 both f SR and n I - T1 Modulo 21? are plotted as functions

of ka. Figure 9 is an enlargement of the region 35 < k < 65 of Fig. 8. In

addition we have indicated values of Re(x ) for 3 < n < 28 by the

position of vertical lines. These lines are labelau with the appropriate

value of n at the top of the figures.

The vertical lines 211ow one to determine n, at the point where the

Rayleigh wave contributions all add in phase. By examination of . -. 8 and 9

one can make several statements about the nI and its relation to the

structure o4 f SR We j~e that the value of m at the point where
a + (1/2) 7yleigh wavelengths fit on the sphere is uot the same for all n.

Furthermore, the value of n at these points dictates what kind of

structure fSR will have in the loce.l region. For instance n 0 when

a - 13,28 and fSR has a maximum right at these points. Likewise nI a 1

who n a - 4,21 and fSR has a minimum at these points. Rowever, it is

obvious from Figs. 8 and 9 that in most cases n I does not equal 0 or T

and the maximum and minimums of fSR do not coincide with the in phase adding

if the Rayleigh contributions.

The ideas and results to this point can be used to reexamine and

qualify the recent RST analysis of the backscattering form function of a

tungsten carbide sphere. First, the Rayleigh waves are responsible not only

for the quasinulls in the (summed) form function but are also responsible for

many of the maximums. Indeed, the interference of the specular reflection and

Rayleigh contributions are responsible for the overall structure of the form

function in a much more encompassing way than the RST discussion implies.

Furthearmure, the statement that the quaiinulls of the form function are "at

the roots is only true for n - 4,21 which points I Last,

-h* roo's -. 'P -.! %
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- The phase . betdeen the specular reflectiou and first Rayleigh

wave concribucton to bccac.cattering is shown in the upper part of the

figure. In the lower part f S fR rom Fig. 4 is given. Am in Fig. 3

the vertical lines indicate the position of the real part of the

Rayleigh resonances -Me x al where a is given at the top of the

figure. To within the resolution of this graph the vertical Lines

allow one to find the phase becween the first Rayleigh waves

contribution and specular reflection when a + (1/2) cycles of the

Rayleigh wave fit on the sphere; i..., at resonance. Note that

does not always have a maximum or minimum at the Re(z a) values.

Fig. 8.
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An expanded view of part of Fig. 8 is shown here so th~at one can

obtaui a more detailed look at how the phase m At the RIe( al)

effects the local structure offSR

Fig. 9.
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Figs. 8 and 9 imply that the Rayleigh wave may be responuible for a local

"minimum or maximum in the form function even though the minimum or maximum may

not be at one of the xnl of the Rayleigh waves. This implies that some care

may be needed in using the labeling in Fig. 4 of Ref. 3 to understand

fluctuations in f The labeling may correspond to the numerical values of

X ; however, to understand the effect of a resonance on the form function,

the coupling efficiency onto the sphere as well as the interference between

the specular reflection and the surface waves must be taken into account.

4.3 Resonance conditions from RST and the SWT

In this section the condition for resonances given by the SWT (the

"physical resonances") are compared with that of RST ("RST resonances"). The

RST and SWT treatments of resonance differ. The RST x., are found by

allowing x to take on complex values while n remains an integer; i.e., RST

resonances are located in a complex x plane. In the SWT, however, x

remains real and one allows n to take on continuous complex values (i.e.,

the v values) and the poles are located in a complex v plane. It is the

poles in this complex v plane which lead to the idea of damped surface

waves. In Sec. IIA we use Eq. (7) to examina the SWT and RST resonance

conditions and then in Sec. TIB we arrive at the same results through a more

formal channel.

A. A first look

Using again the definition v - + is, Eq. (7) can be written as

-Gz exp~inl 2$ 28IT-e6
f(x,r) = (1 - exp(i2v)] (8)

This equation resulted from the SWT and it is obvious that the resonance

behavior is related to the complex value of Vl where we must remember that

- -:*~ -~ ~ - 5-
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V is a function of the real ka x. By varying x we can locate the

values V in the complex v plane where vn - n + ao and a + (1/2)

wavelengths of the surface wave fit on the sphere (cf. Sec. I). The valuo of

x at which Re(vN ) - a are the resonance conditions given by the SWT.

These x are real valued and are designated as xa.n

To examine the RST resonance behavior of f we can expand v

locally around the point x% giving

V", a + ion+ v(x-x,) + ... (9)

where V ! Roe + i 1mv! and the prime denotes differentiation with respect

"to x evaluated at x. Substituting Eq. (9) Into Eq. (8) gives

f~ r ex (x~ TO I - Gz exp(inz - 28Z(IT - e)] (10)fz~'=)= {• -exp(12rv(X - (Xn + 414 + i~f )1} (o

~•,

where ax -- 8 Z(1m=,, 1/i,,[ 2  and rZ 281,(Rev')/r),1 2 . Note that Ax is

negative real. This approximation is valid near resonance when

Iv(x - x•) I <<I v(x - xa)I. From Eq. (10) we can look at the RST resonance

condition by allowing x to take on complex values. The pole in f is
az

located at x 0 (xz + Ax) - i. z- xj*

Recall that the usual RST resonance condition is x - Re(x nz). We see

that this differs from the SWT result (x a xz) by an error Ax. The

magnitude of the error obviously depends on the pole in the complex v plane

"associated with the resonance. We have calculated numerical values of Ax

for the Rayleigh pole and one whispering gallery pole in both tungsten carbide

and fused silica. The values of Ax at ka 40 ranged from Lx -0.0007
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for the whispering gallery pole of Lungsten carbide to ax =-0.1 for the

Rayleigh pole of fused silica. The Ax shift for the Rayleigh pole of

tungsten carbide was lese than -0.003 throughout the kc range of the figures

of Sec. I and is not detectable for any of the plots of that section.

For a given value of x, the phase velocity ca of a surface wave may

be calculated using the SWT from the location of the v pole. The result,

which follows from Eq. (30) of Ref. Sand the phase matching condition

sine . c /c, is c /c - x/[Ec. + (1/2)]. Letting x xa so that a

gives

CLc /C c~f + (1/2)] (1

Since x, I Re(xa) - Ax, we also have

cZ/c - (Re(x1 ) - Axl/(n + (1/2)] (12)

Equation (12) allows one to properly calculate surface wave phase velocity

from the RST resonance condition.

2,16Previous work in RST relating the v and x complex planes for

cylinders and spheres started in the x plane and then carried out an

expansion of x£ equivalent to the expansion of Ztn Eq. (9). By

examination of these expansions one finds an implicit assumption in Ref. 2

that d(Imx )/dv- 0. This is analogous to assuming • - 0 in Eq. (9) in

which case Ax would equal zero. One should note that the relation between

the complex v and x planes was previously examined 1 7 '1 8 for applications

- of the SWT to quantum mechanical scattering, especially Ref. 18, pp. 106-113.
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B. A more formal approach

The results of Sec. IIA can be derived using the general expressions

for the form function f• 5  and fS. The expressions used for fPWS and

fSWT in this section are less specific than given in Sec. 1 since detailed

"forms are not necessary in the derivation. The approach of this section is

similar to that described by Newton for quantum mechanical scattering. 1 7

The PWS result f WS can be written as

.WS (x,@) - • An(x) Pn() (13)

anO0

where w - cosS, Pa is the Legendre polynomial, and A (x) is a complicated
3a

"function of x; A diverges at the complex x of RST.

As discussed in Sec. 1, fSWT can be written as a sum of

contributions from specular reflection, transmitted bulk waves and surface

waves. (For completeness one must also include a possible contribution from

a 'background integral" and that due to forward diffraction in the case of

near forward scattering.) One can write

f SWT ) - f+f(14)

Z-R,WG

where f includes all contributions to f SWT except those due to the

Rayleigh and all whispering gallery waves which are accounted for by the sum.

For purposes of the present discussion it is convenient to rewrite the

sum of Eq. (14) in slightly more detail. Using Eqs. (22) and (23) of Ref. 5

we can write

S~B (x) P (-ii)

f -(X,) f + B z (15)
Esinriv

. . . . .. . . . . .* -.- . - *\*** -- . - . A. . * A ..

A . A S ~%
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where P is nov a Legendre function of the first kind. When x" is large
Vz

we may take fPWS fSWT Thus we have

.~ W Px (-P)

A(x)P .) - f1 + Cx) (16)
nr0 Z-RWG slnz

Now multiply both sides of Eq. (16) by P ,(4) were n' is a nonnegative

integer and integrate from Ui -1 to 1 - 1. Using the relations 1 9 ' 2 0

S(2n+l) (17)

0 2 sinirvz (18)a V" z(T V -n') (NJ z+n,+1) (

we find that

C

A(x) (+ E (19)Z-=R, WG z-.1) (V

2n-I ) l()du (20)
n 2 1 n

where C• (2n+l)B V/I depends on x and 6•n, in Eq. (17) is the

Kronecker delta. It is apparent from the form of the summation that A (x)

(and therefore the form function) exhibits resonance behavior at x near xZ,

which is the resonance condition from the SWT. Recall that Re(v) - n when

.-. . ..* ~
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x - x•. (There may also be some resonance behavior due to E but we will

* anot address this.) Applying the expansion given by Eq. (9) to (v - a) in

Eq. (19) gives

C
W ianl(-X + E (1

a ) -RWG z xx x)+iirz) (

where Ax and r, are as defined below Eq. (10). We now see poles in the

"complex x plane at the values x Is (x& + Ax) -ih r, as before and the

discussion and cautions subsequent to Eq. (10) apply.

This paper has reexamined some of the central concepts of RST. Though

the specific case of a fluid-loaded sphere was used, the results have more

general ramifications. The usefulness and power of the SWT for understanding

acoustical scattering problems has been illustrated. It is appropriate to

"note that the present research was completed on the centenary of Rayleigh's

original analysis21 of surface waves on the flat surface of an elastic solid.
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ZNU and ZKA

The program ZNU calculates the SWT poles of a tungsten carbide sphere

in the complex v plane given the real ka value of the sphere. Parts of the

program were adapted from a program written by Brad Brim as part of a master's

"degree project (Ref. 21 of Chapter 2). The program requires that you input a

guess (GUESS) of the pole position. It also asks for the region in the

complex plane where it is supposed to look (HEIGHT), the precision required in

pole location (ERROR), and the ka value of the sphere. The program assumes a

complex value for ka but one need only set the Im kaa - 0 to find SWT poles.

The program uses the winding number theorvn to find the poles. There is a

commentary (written by Brad Brim) within the program on the winding number

theorem. Within this commentar7 the other parameter you are asked to input

(Npnts) is discussed. The program finds the SWT poles by seeking the zeros of

the function D• defined in Appendix A of Chapter 3.

The subroutine OLVER (which is called within the program) is given

later in this appendix. This subroutine limits the accuracy of finding the

SWT poles to no better than 0.000001 + O1.0001. Furthermore, this accuracy

is only applicable under the conditions given in Section 4.2.

This program was used to generate the numbers found in Table I of

Chapter 3. That table can be used to check that the program is working

properly. if used for other isotropic spheres the material parameters must be

changed.

The program ZKA (not listed here) is like ZNU except that it locates

the zeros of D n(ka) as defined in Chapter 2. Here n - Re(NU) is a

specified integer and Im(NU) - 0. The complex ka for which D n(ka) - 0 are

obtained. The principal modification to ZNU is in the subprogram for the

function f. The program was used to generate Table I of Chapter 2.

S•. ., .• ,-,'. ... '''..,.' ., -. , .- • ,'/ / . - .. ,..-,..,.. . • ,.,, - .- . -', . - , ." '- ,,,• '..*,, . -,• , -"•,,,.,,V
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CCCCCCCCCCCCCCCC
C C
C ZZIU C
C C
CCCCCCCCCCCCC

ccccccccccccccccccccccccccccceccccccccccceccccccccccccccccccccccccccccccc
C C
C The calling program and subroutine ZROOT was originally C
"C written by Brad Brim of the ER department.It has been altered C
C to apply to the scattering problem at hand.ZROOT locates the C
C complex zeros and poles of the function F which the user defines. C
C At present F is Dn of the fraction Bn/Dn discussed in the text. C
C This version of the program can be used to find the zeros in the C
C complex lamda (or nu) plane given a real value of ka.This program C
C was used to find the Rayleigh poles given in Table I of chapter 3 C
C .To do spheres of material other than tungsten carbide you must C
C change the material parameters in the function F. C
C The function F calls the subroutine OLVER which is given C
C in a seperate part of thi.s appendix. I make no claims that this C
C program as altered is "efficient" in the sense of computer time C
C or program length. C
C The program includes a discussion of how ZROOT works. C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C**
C* This is a very general calling program associated with the *
C* routine "ZROOT". It handles all the input of parameters and *
C* output of results. *

C*

C* SEE the subroutine "ZROOT" for the requirements on F(z) and the *
C* input parameters. Contained therein is a fairly thorough *
C* description of the algorithm and numerical considerations. *
C* *

PY.AL*e RADII(I0),X,Y,HEZIGHT,ERROR
INTEGER ORDER(10)
COMPLEXX16 ZERCS(10) ,GUESS,KA
COMMON KA

I WRITE (1,10)
10 FORMAT(/////,' REAL PART OF GUESS',T35,' ')

RE&D (1,*) X

WRITE (1,20)

• . -,-• --. -..• -.- -,• .... ---- -- ,- ,. -. ,--.. - -.--. " . -'•.," ,'............................-."....-...............,.. ..-.---. ,-..--'-N"
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20 FORMAT(' IMAG PART OF GUESS,T35, _')
READ (1,*) Y

GUESS a CMPLX(X,Y)

WRITE (1,30)
30 FORNAT(/, l DESIRED HEIGHT' ,T35,' ')

READ %I,*) HEIGHT

WRITE (1,40)
40 FORMAT(/,' DESIRED ERROR',T35,' _1)

READ (1,*) ERROR
ERROR - DXAXI(ERROR,1.0D-07)

Npnts - 100
WRITE (1,50)

50 FOPMAT(/,' POINTS PER QUADRANT SIDE',T35,' ')
READ (l,*) Npnts

WRITZ(1,53)
53 FORMAT(/, 'REAL PART OF KA',Tr5,'_')

READ(1, *) x

NRITZ(1,54)
54 FORMAT(/,'IMAG PART OF KA',T35,' ')

READ(1,*) Y

KA-CMPLX (X, Y)

WRITE (11,60)
60 FORMAT (SX,/////)

CALL ZROOT (GUESS,HEIGHT, ERROR,Npnts,
+ Nzero, ZEOS ,RADII,ORDER)

IF (Nzaro .EQ. 0) THEN
WRITE (1,70)

70 FORMAT(/,' ********* THERE WERE NO ZEROES ********')
ELSE

WRITE (1,80)
80 FORMAT(/,' ********** THE ZEROES WERE

DO 100 I-I,Nzero
WRITE (1,90) I,ZEROS(I),RADII(I),ORDER(Z)

90 FORMAT(/,/, 14, 7X,2E16.7,7X,Z14 .7,7X,14)
100 CONTINUE

ENDIF

GO TO 1

END

's ' - .

.-- . . . . .."-"
* p p"
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SUIOUTZNZ ZROOT (CNRHXTZ, ZRROR, Npnts,
+ Nxero,ZZROS,RADII,ORDER)

C***** by RADLZY L. BRIM final revisions 7/24/83 ***

C**

¢* This routine searches the complex plane for the roots of the *
C* function F(z). F(z) wist be an externally defined COKPLEX*16 *
C* function subroutine. The variable : must also be COMPLEX*16. *
C* This routine is easily modified for 7(z) -> F(z,(Xn)) *
C* where (Xn) is a set of n parameters independant of z. *
C* *

C* *
C* This routine is based on the "WINDING NUTMBER" theorem, found *

C* in any complex variables book. *
C'
C* This theorem basically says .....
C* "The inteqral around any simply closed contour (evaluated *
C* in the clockwise direction) of the function [F'(z)/F(z)j *
C* will be equal to 2*pi'i*(#P-#Z)." *
C* where ... #Z - number of zeroes within the contour *
C* #P - number of poles within the contour *
C**
C* *
C*
C* SID *4 *
C,
C* *
C* CORNER #4 CORNER #1 *
C* > >
C* *
C*
C* *
C* r
C* *

C* C1UADRANT s QUADRANT *
C* #4 #1 *
C**
C* 1 *
C* * *
C* *
C* \ : / *
C* S I:IS *
C* I # I....cross.4.....C TR ..... cross.#2 .... I I # *
C* 03 I : I 10 *
C* E I :IE *
C* / : \ *C* c
C* r *
C*0C* S*
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C**

C* *C* 3 I *
C' 3 *

C* CORNER v3 ON 2*

C*
C* *

C* SIDE #2*
C**
C**
C* *

C* This routine was written especially to determine the location
C* of A=L the roots in a specified square region, to a specified
C* accuracy. ot.her routines may claim to be more efficient, but:
C* all ot~her comlplex root search routines t.his author knTown of will*
C* terminate after findlingth :e location of only t:he first: root= that:C* he routine happens upon.*

C'

C* The parameters of this program are .....
C* *
C* oNPUT rCoTsR [C*lap fd n squar e regionf to a regii *
C* in which b o search for rots. *
C* HITE oR*0p] Half r ohe lengti h of a side of *

C* this square. (Quadrant: height)*C* ERROR fR*08] The maximum quadrant height *
C* of oe roop location(s).o*
C* Npnts am*02e Nuter of pornas per quadrant *

C* side in numerical int egration.*

C'

C* OUTPUT : ZEROS(10) C*161 Center(s) of square region(s)
C* containing to e rcho (s). *
C* RADII(10) R'*08 AcuTal quadrant heigh t of he *
C* toherspondng region(s). *
C* ORDER(10) p1*02] order of pne r p ud(s) *

C* ÷N ->Nth order ZERO*
C* -N ->Nth order POLE
C* *
C* The winding number basis for chis routine allows one o find *
C* the locaion of both zeros and/or poles. The problem wih this *

C* is, if a region is searched which contains an equal number of *C* poles and zeros, tis is interpreted as a region with no roons.
C* Thus, it is recommended that this routine be used wit functions *
C* which has only zeros OR poles. The exception is of course when *

C* one has some knowledge a priori of the location of both types of *
¢* roots and regions where they occur mutually exclusively.*C* This routine stats out by calculating the winding number of *

C* th•e given "initial square region". If it's non-zero the routine*
C* next look.s at t.he quadrants of that region in ascending order. *C* f the winding number is zero, it goes on eo he nex quadrant. *
C* if ie aindin number is non-zero and the error is small enough, *
C* theusn t is rece dtorded. If the error is oo large, this *

C' wihhsol eosO oe. Teecpio so orewe

,",.,. -- ,, . C' one,_/ has some.. knowldge pr,-.-•>-.:iori. of,- the .location of both types.'.-.-,-....,...of. -
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C* quadrant becomes the now "initial square region" and the routine *
C* will start over. When the routine has done enough "splits" to *
C* locate a root to the desired accuracy, it begins to work its way *
C* back to larger regions, by checking quadrants of previous splits.*
C* The variable Hoplit keeps track of how many times the original •
C* initial square region has been split up. A maximum of twenty- *
C* four splits are allowed, which should always be sufficient. *
C* Since a subroutine in FORTRAN may not call itself, the arrays *
C* CZNTER,ZIGHT,QDRNTS,INTGRL,ZNSIDZ are used to store information *

C* calaculated in 'previous splits so it does not have to be redone. •
C* *
C* The function (F'(z)/r(s)3*dz is approximated as *
C* *
C* U7(z2)-F(zl)]/Cz2-zl]1 / (O.5*CF(zl)+F(z2')) * (z2-zl *
C* *
C* OR, by reducing *
C* 2*(1-2'{7(zl)/[F(zl)+F(z2)])) *
C* *
C* Integrating this over Npnts points *
C* *
C* integral ,,.2 * (Npnts - 2*SUX) *
C*
C* where X - (zl+22)/2
C* SUN - the sum for each z F(zl)/[F(zl)+F(z2)] •
C • •
C* This author found it both numerically accurate and efficient *

C* in time to calculate the quantity "SUMO and then apply the *

C* above integration formula.
C* The subroutine "EXACT" is called if F(.) happens to be exactly *
C* equal to zero. That fact is printed and the routine stops. *
C* The subroutine "OETWN" is called if Fsum - F(zl)+F(z2) happens *
C* to be exactly equal to zero. There, F(z) Ez as defined above] *
C* is calculated. If F(z) is non-zero, Fsum is replaced by twice '
C* 7(z) and the numerical integration continues. If F(z) is also *
C* zero, that fact is printed and the routine stopped. *
C* The reason that the routine is stopped if a zero is found is *
C* because numerical problems are very likely. If a root is *
C* located "near" the contour of integration (relative to the stop *
C* and quadrant sizes) then this root will contribute approximately *
C' half its normal value to the winding number. The contribution *
C* is almost always greater than half of normal if the root is just *
C* inside the contour, and less if just outside. Similarly, for a '
C* root located near a corner in the contour, the contribution will *
C* be approximately one quarter normal. These two facts tend to *
C* help the program work, even if the root is close to the contour. '
C* The required "Npnts" will vary with the behavior of F(z) It's *
C* recommended that for large "RITE" and large "Npnts" one not use *
C* a small "ERROR". Then, it saves time to do two call sequences. *

COMPLEX*16 ZRROS(10) ,CENTR,dSIDE(4) ,CORNER(4),
+ CENTER(24),INTGRL(24,0:8),INSIDE(24,S),
+ Zcornr,Zend,F,Fzl,Fz2,Fsum,SUM,WIND

INTEGER ORDER(10),QDRNTS(24),SIDE,HALF,WINDno,CROSS,QUAD,
+ start, end
REAL* 6 RADII(I0) ,.EIGHT (24),HITE,ERROR,delta

•..-...o.....-., • .. t..'.•-.'.•i•" •-. ;.................................................................................•............"..... .o ,/,
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* EXTzRNAL F

d3101(1) - ( 0.000 -1.000)
dSZOZ(2) - (-1.000, 0.000)
d3102(3) - ( 0.000, 1.000)
d$101(4) - ( 1.000, 0.000)

CORNER(1 - ( 1.000, 1.000)
CORNER(2 - ( 1.000,-1.000)
CORNER(3) - (-1..000,-l.000)
COIRNR(4 - (-1.000, 1.000)

Wzerc 0
CERTER(1 - CZNTR
UZIGHT(1) - RITZ

1 sp2lit - lfsplit+1
delta - HEIGIIT(Noplit)/Npnts

0O 103 SIDEL1,4
Zcornr - CZNTER(Nsplit)+NZIGHT(Nsplit) *CORNER(SIDE)
FPz2 - F(Zcornrz)
17 (1.38(722) .ZQ. 0.000)

+ CALL MCT(Zcornr)
DO 102 BLAULF,2

SUM( - (0.000,0.000)
start - 1+(NALr-l)*Npnts
and - HALF*Npnts
00 101 LOOPS-start, end

Fz1 - Fz2
Mz - F(Zcornr*LOOPS*delta*dSIDE(SZDE))
?sun - Fzl+Fz2
IF (ALBS(Fz2) .EQ. 0.000)

+ CALL EXACT(Zcernr*LOOPS*delta*dSIDE(SIDE))
17 (A38(Psuu) .EQ. 0.000)

+ CALL SITWN(Zcornr+(LOOPS-O.5) *delta*dSIDE(SIDE) ,Fsum)
SUM -SUM + Fz1/Psiui

101 CONTIN(UE
INTORL(Nsplit, (SIDE-I) *2+H{ALF) -2*(Npnts-2*SUM)

102 CONTINUE
103 CONTIN1UE

INTGRL(Noplit,0) - INTGRL(Nsplit,S)

WIND - (0.000,0.000)
00 200 LOOPSL1,8

WIND - WINI>.IN'rQRL(Nsplit,LOOPS)/(0.000,-46.2S318e530S00)
200 CONTINUE

W'IN~no - NINT (REAL(WIZND))

I? (WIN~no .EQ. 0) GO TO 6

Nn
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WRITE G6~,10) Nsplit,WflID,CDIT!A(Nsplit) ,UZIGIT(NSPLZT)*.5
10 FORKAT(3X,/,X,14,' **621., ***,715z2s

IF (NZI M (Naplit) .LR. EROR) 00 TO 3

DO 302 CROSS-1,4
Zond - CENTER(Nuplit)-HZZGHT(Nsplit) *dSIDE(CROSS)
Mz - F(Zend)

ZIP (ABS(Mz) EZQ. 0.000)
+ CALL ZXACT(Zend)
SUM - (0.000,0.000)
00 301 LOOPS-1,Zfpnts

al- Fx2
Mz - ?(Zend+LOOPS*delta*d.Szn:(CROSS))

7mmx - Fz1+Fz2
17 (ABS(7z2) ERQ. 0.000)

+ CALL MCT(Z~nd.L40LOPS*delta*dSIDX (CROSS))
I I (ABS(fmilm) .EQ. 0.000)

+ CALL UTZNW(Zend+e(LO0OPS-o.5) *delta*djIZD(ROSS) ,Fsun)
301SUN - SUM + Izi/Ipsum
31 CONTZNUR

ZNINZD(Noplit,CROSS) - 2D,.0 (Nns2.,.0*S)
302 CONTfIUZE

INBZDZ(Nsp1±t, 5) - INSIDE(Nopi~t, 1)

QUAD = 0
2 QUAD - QUAD4.1

QDRNTS(Noplit) = QUAD
UMIGHT (Noplit+1) - HEIGET (Noplit) /2. 000

* ~~CCMIT(Nplit*1) - CMfTR(Nuplit)+FLEGHTýNsplit.,.) *C0PI(QUAD))

+ -INSIDE(Nap1±t,QUAn)+INSIDE(Nop1±t,QUAD.,))
+ /(0.000,-5.28318530800)

WIN~no - 1ZNT (REAL (WZND))

WRITE (1,20) QUAD,WtD, WrNDNO, CNTE (NSPLIT+1)
20 FORNAT(6X,14,2X, 2F11.5,X,I4,2X,2F11.5)

IF (WIN~no .EQ. 0) GO TO 5

IF (HEIGHT(Nupi~t*1) .GT. ERROR) GO TO 1

3 WRITE (1,30)
30 IPORMAT(5X,///)

Nzero - Nzero.1
ZZROS(Nzero) - CENTER(Noplit+1)
RADII(Nzaro) - HEIGHT(Nsplit+l)
ORDER(Nzorc) - WIN~no

4 QUAD -Q0RNTS(Nsplit)

5 17 (QUAD.LT.4) GO TO 2
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6 Naplit - Nsplit-1
1F (Nuplit NZ4. 0) GO TO 4
RETURN
END

SUR1ROUTflh EThN (2 ,?aux)

COPLZXX'16 z,F, Fsuu,Fnew

WRUTE (1, 10) x
10 FORXAT(' BETWEEN two points at',2E21.14,' the function was Zero')

Thaw a (2.000,0.000)'F(Za2,X)
IF (ABS(Fnav) .EQ. 0.000O) THEN

WRITE (1, 20)
20 FORMAT(' and it was also Zero AT THAT POINT !1')

STOP 06
ELSE

Faux - Fnev
RETURN

ENDS?

END

SUIROUTINE EXACT (z)

COIGLEX'16 z

WRITE (1,10) z
10 FORMAT ($ WE HIT A POINT WHERE THE FUNCTION IS EXALCTLY ZERO',

* /,2221.14)
STOP 07
END

CONPLEX*16 FUNCTION F (NU)
COMPLZX*16 X,XL,XT,EXPO,J,7,JP,YP,JL,JTLPIYLPYLP,JT,JTP,YT,YTP,

+ ~ JLP1,JLPP1,YLPLCILPPL,XITPL,nPP1,YTP1,YTPP1,NU,Wjpl,
+ 011,012,013,021,022,023,032, 033 ,JP1,JPPL, YPL,YPPL

COMPLEX'S XC,ThC,XTC,JC,JPC,YCCLPC,JLC,JLPC,YLC,YLPC,JTC,JTPC,
* YTC,YTPC,JLP1C,JLPP1C,YLP1C,YLPP1C,JTP1C,JTPP1C,YTP1C,

+ YTPP1C,NUC,NUP1C,JP1C,JPPLC, YPLC, YPPC

REAL'4 SJ,SY,BJL,SYL,SJLP1,SYLP1,SJT,SYT,SJTP1,SYTP1,53P1,SYP1

REAL*S 01)10,01)1, SPEEDO, SPEEOL, SPEEDT, PI

COMM(ON X
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EXIO-(0. 000, 1. 000)
P1-3.141592654

SCeCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCCCCCCCCCC

C Set the material parameters of the sphere here. C
cCcccccccCcCCCcc~cCcccccCccccccccccCcCCCCccCcccccc~ccCccCcccc~cccCcccc

OVWO-1. 0
DZNZ-13.800
SPEZDO-1.*4760
SPEZDL-6.*860
SPEEDT-4. 185

NVmNU+( .3D0,0.0D0)
NUP1-Nu+(1.000, 0.0D0)
NUC- (NU)
NUPLC- (NTP1)
XC- (X)

XLX(SPUZDO/SP=DfL)
XTX((SPERDO/SPEEDT))

XTC-(XT)

CALL OLVfl(NUC,XC,JC,.TFC,SJ,YC,YPC,SY)
CALL OLV!R(NUPIC,XC,JPlC,JPPlC,SJPI,Y~PlC,YPPIC,SYPI)
CALL OLVfl(NUC, aC ,JLC,JLPC, SJL, YLC,YLPC, SYL)-
CALL 0LVER(NUPIC,XLC,JLP1C,JLPPIC,SJLPI,Y~LP1C, YLPP1C, SYLPJ)
CALL OLVER (NUC,XTC ,JTC ,JTPCSJT, YTC,YTPC, SYT)
CALL OLVZR(NUPIC,XTC,JTTPlC,JTPP1C,SJTPI,Y~TPlC, YTPPlC, SYTPI)

Jm(JC*!XP(SJ))
!-(YC*EXP(SY))
JPI- (JTPC*EXP (SJPI))
'fpli(YI1C* M (SYPI))
JL- (JLC*2W(SJL) )
YL-(YLC*ZXP(SYL))
JLPI- (JLPIC*EXP(SJLPI))
YLP1- (YLP1C*EXP (SYLPi))
JT (JTC*EXP (S3T))
YT-(YTC*EXP(SYT))
JT?1- (JTPIC*EXP (SJTPl))
YTP1-(YTPIC*EXP(SYTPl))

ccccccccccccccccccccccccccceCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C The elements beowo are given in appenidix A of chapter 3. C
C They are the elements of On. C
CCCCCCCCCCCCCCCCCCCCCCCeCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Ohm C (DEN(0*SPEEDO**2. )/ (OENI*SPEED?**2.) ) *(X**2.)
D11m011*CSORT (P1/(2. *X) ) *(J+EXPO*Y)
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* NU-NU (.500,0.000)
012n(,2.*tIU*(NU+L. )-XT**2.) *JL-4.*(NU*JTL-XL*JLPl)
D12m012*CSQRT (P1/ (3.*XL))

013in2.*NU*(NU+1.) *CSQRT(Pl/(2. *XT))
013-0l3*( (NU-1. ) *J¶TXT*JTPl)

021mCSQRT(PI/(2.*X))
021m021* (X* (JP1+EXPO*YPI) -NU* (J+EXPO*Y))

D22-CSQRT(PI/(2.*xL)) *(Nr3*JL-.X7L*JWp1)

* D~23-NUO(NU41.) *CSQRT(Pl/(2.*XT) ) *J'T

032-2.*CSQR'T(Pl/(2.*XL))*((l.-NU)*JL+XL*JTLPI)

033-2. 'CSQET(P1/ (2. *XT) ) * (MU*J-XT*JTPI)
033in033+CSQRT(Pl/(2.*XT))*(XT**2.-2.*INU*(NU*1)+2.)*JTT

F0L1I*022*033-011*032 *O23-021*012*033+021*032*013

- ~RETURN

I-.m
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SLOPE3

This program generates a polynomial curve fit. It fits input data to

a polynomial of up to and including order 5. The program was obtained from

the Shock Dynamics Laboratory of Washington State University. It is based in

part on subroutine LSQFIT obtained from the Stanford Accelerator Center by

P. Marston.

The program was used to fit discrete values of the phase velocity,

group velocity, and attenuation of the Rayleigh and slowest whispering gallery

waves on tungsten carbide spheres. Polynomial expressions were obtained for

these parameters as a function of the ka of the sphere (cf. Chapters 2 and 3).

it was also used to curve fit discrete data for the coupling parameter G
4 ~WGI.

discussed in Chapter 3 and later in the appendix for the program WS.

The program is not licted here since polynomial fit programs are

common. If the reader wishes a copy of the program he should request a copy

of internal report SDL 78-02 from the Shock Dynamics Laboratory of Washington

State University.



138

WS

This program calculates the SWrT approximation for the magnitude of the

backacattering form function of a tungsten carbide sphere. It outputs the ka

value and the form function magnitude for that ka in the range 10 < ka < 80.

As it is given here the program results can be plotted to give fSRWG of

Chapter 4. This again offers a check that the program has been entered

properly. By changing the Z do loop limits to Z - 1,1 one can obtain fSR

of Chapter 4. By adding write statements one can generate numbers for

plotting the coupling parameters G and the backscattering amplitudes used

in Fig. 8 of Chapter 3 or Fig. 2 of Chapter 4.

A comment is important on the way the program calculates the coupling

parameters GR and GWG1 of Chapter 4. The GR is calculated using the

curve fit results for the phase velocity and attenuation of the Rayleigh wave

result5ng from using the program SLOPE3. This was adequate for the Rayleigh

wave but when done for the whispering gallery wave WGI it was inaccurate.

This was because those results were much more sensitive to small errors in the

values of the phase velocity. Therefore, for the whispering gallery waves WS

wat first altered so that instead of a do loop over I and Z one just

entered results for the ka of the sphere and the SWT pole location v GI from

program ZNU and outputed an "exact" value for GWGI* This was done for 23

values of ka then a complex c-i.rve fit for GCGI using the program SIOPE3 was

generated. This curve-fit resuit is used in WS. In retrospect the method for

obtaining G is more effIcient from the standpoint of computer run time

then the current method for calculating G within WS. From the sPtandpoint
R

of accuracy, however, aR was calculated both ways and was found to give the

same results so the program was not altered.
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, The subroutine BD of this program calls the subroutine OLVER given

"next in this appendix. To do other isotropic spheres one must use ZNIT and

SLOPE3 to generate the appropriate curve fits for phase velocity,

attenuation, and coupling parameters and alter WS accordingly.

N
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cccccccccccccc
c c

c WS c
C c
ccccocccccecccc

cccccccccccccecccecccccccecccccccccoccccccccccccccccoccccccccccccccc
c c
c This proigram calculates an approximate form function for a c

*c tungsten carbide sphere using sommerfeld-watson theory.1t c
c appropriately includes the specular retlection,Rayleigh wave, C
c and slowest whispering gallery wave.Ey including further write c
c statements one can got the coupling coefficients for the surface c
c waves as well as the waves amplitudes eajka time they circum- c
c navigate the sphere.One thing to nocte is that the coupling c
c coefficient is calculted differently for the Rayleigh and c
c whispering gallery wave.The Rayleigh calculation uses curve fits c
C of the wave speed and attenuation to find the coupling coeffi- c
c cient This proceedure was niot accurate enough for the whisper- c

*c ing gallery weve so the exact result for the coupling coeffi- c
o cient was calculated at sieveral Ica values and then these results c
c were curve fit to give continuous valuea. c
a The subroutine 50 of this program uses the subroutine OLVER c
a which~ is given elsewhere in this appendix. c

C c
ccccccecccccccccecaccceccaoccccccccceccacccccccccccccccaccccccaccccccccc

dimension fabc(l000) ,}am(l000) ,cupla(l000,2) ,speca(l000)
dimension fabst(1000)
real*4 vel , vel, Ivel ,theta,beta, theta, thetp,dens,denl ,dum,

&rayl,ray2,ray3 ,ray4,]can,fabs,ka,rvel,aspec,]betp,betm
& fabst

* complix*8 nu,dminus,dplus,phasel,phase2,x,xs,xl,num,nup,
4 ddplus,dplusm,dplusp~cn,sn,couple,decayl,decay2,
A spec, cth~etm, cthetp, otheta, afabs, cupl ,cupla, speca

pi-3 .141592654
lud- 1

cecocccccccaccaccccacccccccactcccaaacacacacccaccccaccccccaccccccaccccccacccca
c Set material parameters for the sphere.These parameters are same as c
c those used by Gaunaurd In JASA Jan. 1983. c
cceccccccccacccccccccccccccccacacccccccaccccccccaccacccccccccccccacccmcccec

numb-1000
valil. 4760
svel-4. 185
lvel-6. 860
dens13 .8
denll1.0
a-12.*7

ccccccccccccccccccccceccccccccccccaccccccc~ccccca~cCCCCc~~C~CccCcccccccccC
c The i do loop calculates the required Sommerfeld-Watson theory (SW'T) c
c results for a particular surface wave for a range of ka.The 1 do c
c loop selects the particular surface wave:l-l for the Rayleigh wave, c
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c 1-2 for the whispering gallery wave. c
cceccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

do 301 1-1,2

do 100 i-l.numb

eccccccecccccccccccccccccccccceccccccccccecccccoccccccccccccoccccccccac
C This part of the loop calculates surface wave speeds and atten- c
c uations.The calculations use results of a program which curve c
C fits data to a polynomial of up to (ka)**S. c
cccccccccoccccccceccccccecccccccccocccccccccccccccceccccccccccccccccccccccc

ka-IO.+((i-l) *70.)/numb
kam(i)-ka
x-cmplx(ka,0. 0)
if :1. "ý to 211

& -.157333P-S*ka**3
go tij 213J

211 beta-.206't22,...KL-.3068174-2*ka+.4.230E0e-3*ka**2
6 -. l6263e-5*ka**3+.752S55e-6*ka**4

423 it ý: ' .1t. 49.2) go to 417
rVQI-5.480848912*exp(-. 00437092*ka)

go to 213
417 if (ka .1t. 29.0) go to 410

rvel-5.498195789*exp(-.00428319*ka)
go to 213

410~ rvel-S.519E8062*exp(-. 00447460*ka)
go to 213

2l.; continue

cccccccccccccccccccccccceccccaccccccecccoccccccceccccccccccccecccccaccecccc
c This section calculates the coupling coeffcients for the surface c
c wave.Note again that the coupling cocefficient is calculated diff- c
: erently for the two surface waves. In retrospect it is probably~ c
: more efficient to calculate exact results for the coupling coeff- c
c icients at several ka values and then curve fit those results.This c
c assures accuracy and decreases computer run time.The Rayleigh c
c calculation was done both ways and the same accuracy was found C
c but this is not generally found to be the came.Showing the two c
c different methods here allow, a comparison of techniques. in any c
c case one still needs the curve fits for the surface wave speeds c
c and attenuations given above for further calculation. c
cccccccccceccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

dum-ka*vel/ avel
xs-czp2lx(dum, 0.0)
dum-ka*vel/ lvel
xl-cmplx(dum, 0.0)

div-10OO.
theta-asin(l./rvel)
thatm-theta-thata/div
thatpumtheta~thata/div
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if (1 eq. 2) go to 707
dun-ka'uin(theta) -.5
nu-cmplx(duu,beta)
dunumka*sin (thetm) -. 5
nun-cmplx(dua,beta)
dun-ka*sin(thetp) -. 5
nup-cuplx(duu, beta)

call bd(x~xs,xl,num,deris,denl,dainus,dplusm)
call bd(x,xs ,xl ,nup,dens,denl, dainus ,dplusp)
call bd(x,xs ,xl,nru, dens,danl,dminus, dplus)

ddplus (dplusp-dplusn) / (nup-num)

707 continue
if (l.sq.2) go to 703
couple-(4.*pi*cmplx(0.0,1.0)*(flu+.5)*dminus)/(ddplus*ka)
go to 704

703 duul--.l32352+. 644E5le-2*)ka-. 353597a-4*3ea**2
dua2m.0121110-.844136e-3*ka*.672282e-5*ka**2
couple-cmplx (dual, dum2)

ccccc ccc cccc cccccCCCCCC CC= CCCCCCCCeccccc cccccccccc cc ccccc~ccccc
c The exponenial decay and propagation phase shifts are calculated c
c here using the appropriate curve fits.
cccoccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

704 dlumiexp((2.*pi-2.*theta)*(-.±.)*beta)
decayI-czplx(dum, 0.0)
dum-ecp ( (-1.) *2. *pi*bata)
dec~ay2-czplx(dux, 0.0)

almcoe(2.*ka*Cl.-coe(theta))+1ca*sin(theta)*
& (2.*pi-2.*thsta)-pi/2.0)

a,2-sin(2.*ka*(L.-cou(theta))+kca*sifl(theta)*

phAsel-czplx (al, a2)

al-cos (2 . *pi*kca*sin (theta) -pi)
a2-sin(2. *pi*ka*sin(theta) -pi)
pftase2-cmplxtal~a2)

cccccccccOCCC cCcCCOcCCCCCCCOCCCCCCCCCCCCCOcaccccccccceccccccaccccc
c The sipecular reflection is calculated at this point. c
CCC=CCCCCCCCCCCoCCCCccccccccccccccccccccccccccccccccccccccccccccccc

nu-cmplx(-.5,0.0)
call refl.(x, xs,xl,nu,dens,denl,dminuu,dplus)
spec'udainum/dplus
speca (i) -spec
aspec-cabs (spec)

ccccccccccccccCccccCcCeccccccccCccccccccCCcOCcCcCcCccccccc~cCcCCccOcccc
%c Tha sNT terms for the surface wave contributions to the form c

c function are calculated using the results above. c
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ecccccccccceccceccccecoccccccccccccocceccccccocccccccccccccocccccc

ctaplephasel*decayl*couple/ (l.-decay2*pkxase2)
cupla(i,l)-cupl

100 continue
*301 continue

ceccccccocccccccccccccocccccccccccocccccceccceccocccoccsccccceccccccc
0 The approximate form function is calculated.Since the Si-T c
c results for the whispering gallery wave are not accurate below c
c Jca-21 its contribution is not included for 10<k&<21. c
ccoccccccccccccocccccoccccccccecoccoccoccceccccccccccccccccccccccccccccc

do 302 i-I~nuab
if (Jcam(i) .1t. 21.0) go to 303
fabst(i)-ca~bs(speca(i)4.cupla(i,l)-scupla(i,2))
go to 304

303 fabst(i)-cabs(speca(i)+cupla(i,l))
304 writs(lud,315) kam(i),fabst(i)
315 format(3x,3f12.5)
302 continue

end
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ce ccc cc cccaccccccccccc ccccccccceeccccc c cc ccccccc ccccccc~cc
c The subroutine bd calculates the 0- and D+ of the SWT.It uses the C
c subroutine olver which can calculate bessel functions of complex c
c order and arqueaent. c
cccccccccccccncccccccccccccccccccccccccccccocccceccccccccccccccccceccccco

subroutine bd(x,xs,xl,nu,dena,denl.,dz,dp)

A ~cozplex*6 x,xs,xl,dm,dp,rl,r2,2rs,rl,nue2, es2,el2 ,2
& ai,aip,cdux,j,jp,y,yp
real*4 dens,denl,kcas,r,s,]cal,duz,sj,sy

e2-(nha+.5)
call olv'er(*2,x,j~jp,sj,Y,Yp,SY)
jpmrjp*,Gxp(sj)

jinjV*ep(Sj)
ypY~myep (BY)

call alver(e2,xs,j ,jp,sj ,y,yp,sy)

jpmjp*.xp( sj)

call alver(e2,xl,j,jp,sj,Y,Yp,SY)

jpmjp*exp(sj)

dn- (denl/dens) *xs*xs* ( (Yrl) * 2.* **rgs (xs*xs-2. *nu*
& ~(nu.Il.)4.2.))-(2.*(l.-xl*r1,)*nu*(nu+l.)))

dm-dz.x*r2*(((2.*nu*(nu~ql.).4XS*cS)-4.*x±*rl)*(2.*Xs*:sI.

G (nu*1.)*(xs*rs-l.)))

dlpm(denl/deis) *xs*XS*( (X11*rl) *(2.*XS*rs4.(XS*XS...*rlu*

a (xsuxs.i+.*nu(nu2.)42.xlr)*n(2*(l.uxl.r))*(.n1
& (nu~*rl.*((xm*rs (n~.)%*X)-.)))L)(2*s~z

return
end

cccccccccccccccccccccccccceccccccccccccccocccccccoccccccceccccccccccccccec
c The subroutine refi calculates the reflection coefficient from the c
c front of the sphere.It does not use olver since olver is not accur-
c ate for order of less then 3 and for backscattaring we need answers c
c for order O.This subroutine uses large arquement expansions for c
c the bessel and hanicel functions and neglects terms of 0(ka**-2). c
cccccccccccccccccccccccocccccccccccccccccccccccccccccccccccccecccccccccc

subroutine refl (x,xs,xl,nu,denu,denl,dz,dp)
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A *e2eo2,el2,j,jp,y,yp
raal*4 desn,denl,&j,sy

e121'3(nU+. 5) * (nU+.5) / (Xl*Xl)

z22x*(czplx(O.,-1.)*sqrt(1.-e2)-(2.-.z),/(2.*x*
a (1. 0-,e2)) )
xl-xix(azplx (0. , 1.) *sqrt (1. -*2) -(2. -*2) / (2. *1c*

z22s-22*(cuplM(O./(2.)*sqr~1.su+2s(2.*XS*2))

b22(2I./4*(.-a./(2.*s))) n~.*u/X*S

a22.*21*(1.4+l.)/(.xs0,cs).s.:2s/(.*s)a

a (2*nu*(nu+l.)/Cxs~l.a/xs*xs) )-xs

b22-b22-
& ~z2s/(2.*xs*Ics).+(nu*(nu.~l..)/(xs*xs*xs*xs)

a +(nu*(nu+1.)/(XS*XS*XS*Xs)..2./(xs*Xs*XS*Xs))
a ':2s':2l

du-X2*b22. (delul/dens) 'a22
dpm:1*b22+(dezu1/deuus) a22

return
and
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OLVER

This program calculates Bessel functions of the first and second kind

J\,(x) and Nv(x) as well as their derivatives with respect to x for

complex order v and argument x. The program was obtained from J. A.

Cochran of the Department of Mathematics at Washington State University. The

program is asserted to have an error of less than (0.00001 + 1O.00001)

wherever IVI > 3 and x/v > 106. There are some comments in Chapters 3 and

4 on the program as well as a reference to earlier work on the numerical

computation of Bessel functions by Cochran at al. (Ref. 22 of Chapter 2).

Much more extensive coents can be found in the Master degree paper (Ref. 21

of Chapter 2) by Brad Brim.

OLVER makes a decision of whether to scale the values of J (x) and

JI(z) by exp(jscale) and the values of N (x) and N'(x) by exp(yscale)
V V V

for convenient output. In the programs ZJNU, ZKA, and WS the scale factors

are included in all calculations. If one desires to use OLVER for other work

the programs should be checked to see how to include the scale factors.

* -- 5 -- -

. . . . . . . . .
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c~ccccccccccccccccc
c c

C OLVER c
C. a
cCccc~ccc~ccCccccccc

subroutine olver~arqnu,arqw,j,jprime,jscale,y,ypriine,yscale)

C* large order routine to generate bessel functions of first and
0* second kinds and their derivatives for complex values of order
c* arqnu and argument arqv-vritten by e.j.murphy 1970/71,revised
C* by j.a. cochran 1/72, revised by e.r. kamqnia 7/1977.

common /info/ uc,vc,ac,bc,a,b,c,d,cosl2O,cos3O ,third

complex*8 arqnu,arqw,j ,jprime,y,yprime
complex'16 v,nu,nutol3 ,nuto23, nuto43 ,niato2 ,nuto4 ,nu23xz;

+ a(6,2),b(03,2),c(6,2),d(6,.2),ar,12),br(2),cr(2),dr(2),
+ u(5),v(3),asum,bsum,csuZ,dsum,
+ z,zeta,zetal2,ztam32,phiofz,tauinv,tl,t2,t3,t4,
+ ai,aip,bi,bip,ail,ailp,ai2,ai2p,
+ ccsl20,cos3O,
+ x,t,termI,term2
real*8 uc(14),VC(14),aC(5),bc(5),theta,,third,sl,s2,s3,
+ realnu, imaqnu, maqnu
real*4 j scale, yscale

C*' initialization

jscale - 0.0
yscale - 0.0
w = argw

nu - arqnu
realnu, - real(nu)
imaqnu, - izaq(nu)

2 =Wn

theta - third*datan2(izaqnu,realnu)
maqnu - a~bs (nu)
nutol3 - (maqnu**t~hird) *cmplx (dcoom(theta) ,dsin (theta))
nuto23 - nutol3*nutol3
nuto43 - nuto23*nuto23
auto2 - nu'nu
niato4 - nuto2*nuto2
nterms - I
if (maqnu .1t. 25.0d0) nterms -2
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C* compute zeta

Call aZeta (2,Zetal2,phiofz, tauinv)

zeta -zstal2*zsta12

C* the-maqnitude of z determines how we compute ar, br, cr,dr

if (aba(z-l.dO) .qt. 0.ldO) then

a compute ar,br,cz',dr in the normal way

ti - (l.dO,0.dO)/tauinv
t2 - tl*tl
t - t2
UM1 - (l.dO,0.dO)

*v(I) - (1.dO,O.dO)
u(2) - tl*(uc(l)-uc(2)*t)
V(2) in-tl*(vc(l)-VC(2)*t)
u(3) -t2*(uc(3)-t*(uc(4)'-t*uc(5)))

V(3) --t2*(vc(3)-t*(vc(4)-t*vc(S)fl
if (nter'ms eq. 2) then

t3 - tl*t2
U4 - t2*t2
u(4) - t3*(uc(6)-t*(uc(7)-t*(uc(9)-t*uc(9)f))
v(4) in-t3*(vc(6)-t*(vc(7)-t*(vc(8)-t*vc(9)f))
u(3) - t4*(uc(10)-t*(uc(l)-t*(uc(12)-t*(uc(13)-t*uc(14)))))

end if
ztaz32 = (1.0d0,0.OdO)/(zata*zetal2)
do 8 i-I,ntorms

ar(i) a (0.OdO,0.OdO)
br(i) - (0.QdO,O.OdO)
crii) - (0.OdO.0.OdO)
drii) - (O.OdO,0.OdO)
termi - (1.OdO,0.OdO)
term2 - (I.OdO,O.OdO)/zeta12
do 6 k-1,2*i+l

1 -2*(i~l)-k

ar(i) -ar(i)+bc(k)*u(l)*terml
dr(i) -dr(i)+ac(k)*v(l)*terml
terml tarml*ztau32

6 continue
do 7 k-1,2*i

1 -2*i41-k

br(i) -br(i)-ac(k)*u(l)*term2
cr(i) acr(±)-bc(k)*vC1)*term2
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S.teru2 -terma*ztaaz2
7 continue

cr(i) - cr(i) *zeta
8 continue

else

a * compute ar,br,cr,& dr by power series
c

do 11 i-1,nterins
ar (i) -a (6, i)
br ( i) -b (6, i)

dr (1)-d (6,i)
do 10 151-

ar(i)-ar(i) 'zmta+a(1,i)
br(i)-br(i) *zeta~eb(1,i)
cr(i)-cr(i) *:eta+c(1,i)
dr(i)-dr(i) 'zeta+d(l,i)

*10 continue
11 continue

end if

c' compute airy functions

nuZ3xz - nutoZZ*zeta

x a nusZxz 23x
call airy(x,ail,ailp,sZ)

x - conmgZosnl23xzu2x
call airy(x,ail,ailp,s1)

ot *calinq*

21 - ul-s2
jacale - m3
yucale - s2

if (dabs(sl) *gt. 170.CdO) then

if (sl .qt. 0.OdO) then

yscale -yucale+ui

-- I AA -e
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ai2 - (O.OdO,O.OdO)
a12p - (0.OdO,0.OdO)

else
ail (O.OdO,0.OdO)
ailp - (O.OdO,0.OdO)

endif

6l84

ail - ail*dexp(sl)
cupy - ailp*dexp(a1)

endif

bi - cos3o*ail+conjg(cos3O)*ai2
bip - -(ccnjg(coas3o)*ailp+cos3O*ai2p)

C* compute a,b,c,& d sums

asum. - (1.OdO,0.OdO) + ar(l)/ftuto2
baum - rl
osum - Cr(1)
daun - (1.OdO,0.oda) + dr(l)/nute2

if (nterms eq. 2) then
asum - asuz4.cr(2)/nuto4
baum - bsuz+br(2)/nuto2
caum - csuz+cr(l)/nuto2
daun - dsun~dr(2)/nuto4

ondif

0* form J ,y, jprime, yprine & then return the results

termi - bsum/nuto43
term2 - phiofz/nutol3
j = tear2*(aip*terml+ai*asun)
y in-tarmL2*(bip*tarml+bi*asun)

tarml - (2.dO,Q.dO)/nut*22/z/phiofz
term2 - caun/nuto23
iprime -- torn1* (ai*tearl2+aip*dsum)
yprize tsrml*(bi*termz+bip*dsun)

return
and
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surotine uxeta(z, :eta,phiz,r)
C *

c **double precision complex calculation of sqrt(zeta),phi(zeta),
c *0and sqrt(l-xz*).

complex*16 z, zata,phiz,r
double precision pi2,al3,zr,zi,zm,az,arqz
data p12/6.2831.8530717958~dd/,al3/.33333333333333d0/

zim.(0.dO,-2..dO) '2
if(z±.ne.0.dO) go to I
it(zr.eq.l.dO) go to 6
if(zr.gt.l.ldO) go to 5

C 0

c z is not real or is real < 1.1

1 r-sqrt(l.dO-z*z)
if (real(r) lt. O.OdO) r - -r
arqz-datan2 (zi, zr)

C ***

c 0 compute zota0 0L.5

zetalI.SdQ*(loq( (l.dO*r)/'z) -r)
:m-abe (zeta)
if(za.le.l.d-12) go tc. 6

c place zata*'2..5 in the proper quadrant

zr-zeta
zi-(Q.dO,-l.do) Ozeta
az-datan2 (zi, zr)
if(zr.gt.0.dO) go to 4
if(zi.le.0.dO) go to 3
if(arqx.lt.0.dO) go to 4
azinaz-pi2
go to 4
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3 if(arqz.gt.O.dO) go to 4
az-az+pi2

C ***
c * compute sqrt(zeta)
C *

4 &z-az*aI3

zeta-(zx**al3)*cmplx(doas(az) ,dsirn(az))

I c~ ' compute zeta**1.5)
C *

2 *** zet-sCt2d~ea

if (ral(0;d0oid)It .d pi -h

c a is ea pac±nd -1.1 ,),rp~tm~f

u computex1 zetz**1.,gh1trltr2z,(4,()f()ta5

z-data ruI/. 5641B9SS35S77563d0/
+15U-Cpl (0 439374972, 27.028z0*44d ,*05 B16.56923

6 hi-.20234839921049dO, .dO)196411d,.278E10498O

r~-(. d0470,55.0)6060

C ***

tiensiz~onj g (2)

double prcsn . . *.**'* ..i4... - .
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if(temp-gt.2S.dO) go to 2
C ***

C * power series

tsr32'i( .335028033887817do .do)
term2-(.2S8Sl9403792S07d0, 0.dQ)
C-terml
1-terIL2
term2m:*tarm.2
q-term2

hin(0.do, 0.dO)
n-l.dO

1 n-n*1.do
teuI-: 2 *terml/n
h-h+terzl
n-n+l.do

f-f~terml
teim2-:2 *ter2/n
1-1+tarmA2
n-n#1.do
tarZ2hz*ter=2/n
g-g+terM2
temp-termi *conjqg(termi)
if(temp.gt.l.d-32) go to 1
ai-f-q
aip-h-1
return

C *

C * phase amplitude expansions
C *

2 n-1.dO
if(rsal(z).gt.O..) go to 3
n--1.dO
z--2

3 h-uqrt(z)
if Creal~h I.t. 0.Odo) hi - -h
I-sqrt(h)
if (real(l) .1t. 0.OdO) I - -1

t- (1. Sdo, 0. do) /f
gint*t*n
fc(1)-cmplx(rspi, 0.dO)/l
fo(2)mcmplx(rzpi,O.dO) *1

C **compute phases and amplitudes

do 5 1-1,4
y(i)-(0.do,o.da)
do 4 J-1,6
y(i)ag*(y(i)4.c(i,j))

4 conrtinue

5 continue
do 6 1-s2,4,2
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6 conutinue
if(n.qt.0.dO) go to 7

c * set values for cosine expansions

y(2)-y(2)-(0.78S39S163397448d0.O.dO)
y(4)-y(4)+(3. 926990816987241do, 0.dO)
n-l. *dO
go to 9

c **set values for exponential expansions
C *

7 continue
do & 1-2,4,2
y(±)--Y(i)

8 continue
n-2.dO

o ***
a * form ai and aip
o C
9 continue

do 10 1-2,4,2

call func(n,y(i) ,f,i*exp(k))
a(Jc)-y(j)*f*tc-(1)/n

10 continue
if(iexp(l).eq.0.and.iexp(2).eq.0) go to 11
fmxpmdbl*(float(iexp(l)))
a(2)rna(2)*dexcp(dble(float(ioxp(2)-iexp(1))))

11 ai-a(1)
aipma(2)
if(n.ne.2.do) return
aip--aip
return

* end

subroutine func(n,z,w,i)
Complex*16 Z,w

* double precision n,x,y,r,u,v,textra
texctra-. 9210340371976183d1
if(n.eq.l.dO) go to 2

C *

c * calculate exponential

i-Int(real(z))
w-oxp(z-cmplx(dble(float(i)),0.dO),)
return

C *

c * calculate cosine
c ~
2 x-:

y- (0. 0.0, -1. d0) z

i-idint(r)
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v-dexp(r-dble(float(i) ) ) *.5d0
if(r.gt.textra) go to 4
rdexp(-2.dO*r)
go to 6

4 r•O.dO
6 u-v*(1.dO+r) *dco(x)

v-v*(r-l.dO) #dsin(x)
if(y.lt.0.dO) v--v
*c€plx(u,v)
return

end

block d&ta

comon /info/ uc,vc,ac,bc,a,b,c,d,cosl2O,cos3 0, thid

coupleax*ld v,ni, nutol3 , znito23 ,nuto43, nuto2, nuto4 ,nu23xz,
* a(6,2) ,b(6,2) ,c(6,2) ,d(6,2) ,ar(2) ,br(2) ,c?(2) ,d•(2),
+ m(5)),v(5),asux,bsux,csuz,dsum,
+ z,zeta,zetal2,ztaz32,phiofz,tauinv,t,,2, t3,t4,
+ ai,aip,bi,bipail, ailp,ai2,ai2p,
+ co*l20,cos30,
+ x,t,terml,torm2
real*$ uc(14),vc(14),ac(5),bc(5),theata,third,sl,s2,s3,

+ realnu,imaqnu, maqnu

data uc/
.1230 02SOOOOOOOOOOd 0, .2083333333333333d 0, .0703125000000000d 0,

4 .4010416666666667d 0, .3342013888888889d 0, .0732421875000000d 0,
" .8912109375000000d 0, .1846462573E1111.d+i, .1025812596450617d+I,
* .1121520996093750d 0, .23640869140E2500d*1, .8789123535156248d+i,
* .1120700261622300d÷2, .4669584423426247d+l/

data vc/
+ .3730000000000000d 0, .291666666666667d 0, .1171875000000000d 0,
+ .5156250000000000d 0, .3949652777777778d 0, .1025390625000000d 0,

+ .1089257812500000d4i, .2130533854166667d+l, .1146496431327160d+i,
+ .1441955566406250d 0, .2793920898437500d+i, .9961006673177080d+i,
+ .1238668710214120d+2, .5075635242854613d+l/

data ac/
+ .1000000000000000d+l, .1041666666666667d 0, .8355034722222222d-1,
+ .1282265745563271d 0, .2918490264641404d 0/

data bc/
4 . 000000000000000d+l,-.145833333333333'- 0.-.9874131944444444d-1,
÷-.1433120539158950d 0,-.31722720267841" ';

data a/
*(-.444444464396586o0d-02, .1420578595950520d-15),
+(-.1463707789139049d-02, .6540517965151910d-15),
+( .7064169774714094d-03, .1150547373140440d-13),
4( .672887453433355$d-03, .4501377701085880d-13),
4( .1540024288054082d-03,-.1231413828621110d-11),

S. . . . . . .... . . . . . . . . . . ..-. o .. . + . . , +
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4(-.5766054148891132d-04,-.4537867583220980d-11),
+( .6937339163991589d-03, .1897333806124S00d-12),
+( .3616593402959254d-03,-.8371533582241440d-11),
+(-.2698646000992447d-03,-.3102332528113870d-10),
+(-.351293892467797$d-03, .2412173021438300d-09),
+(-.1025787226230560d-03, .3114846206597060d-09),
+( ~.3103622516889943d-04, .17790899832730S0d-07)/

data b/
.+( .1799887220s44a5ld-01,-.10017961598715I0d-16),
+( .88818889036810613d-02, .6331537179006460d-16),
+( .1625687328118995d-02, .3210068395633560d-L5),
+(-.3642847477297854d-03, .6316282866674010d-14),
+(-.3020603907838276d-03, .2654113441221400d-13)
s.(-.5844367298607676d-04,-. 6757485415387840d-12),
4(-.1492829626703820d-02, .2157677521550440d-13),
+(-.1394063233151223d-02, .8929927363489I8Od-1.3),
+(-.3820961498708859d-03,-.25213S00O4952490d-ll),
+( .1690971426253441d-03,-.9523018697274750d-11),
+( .1709979970784747d-03, .737096126548240od-10),
+( .416392294683448$d-04, .25037893084342S0d-09)/

data c/
+( .1587401053816959d 00, .3756978606015920d-17),
+( .2319842152827235d-ol, .1852643775066890d-15),
4(-.3301586923087800d-02,-.93318O2487391570d.-16),
4.(-.2356591754094817d-02,-.4468200793264190d-15),
4(-.86742964.86680654d-04,-.8205527812277570d-14),
4.( .2775244443466439d-03,-.3393508378723270d-13),
4(-.216921922936361ld-O2,-.118S771172507000d-14),
+.(-.3443422456221393d-03,-.2858562252390120d-13),
+4( .7803782532232625d-03,-.103535asa42asa60d-12),
+( .3813588018215028d-03, .3038429677926410d-11),
+(-.9395426299457243d-04, .1101306700814700d-10),
4 (-. 1503912086220632d-03, -. 8649848907871960d-10) /

data d/
+( .7301587529520868d-02,-.1444641035652920d-.5),
4(.3328274163318927d-02,-.6647230-780883520d-15),

* ~.(-.2837940464100678d-03,-.1155671802714180dL13),
4(-.7615127119290934d-03,-.4346463579853540d-13),
+(-.2390070372062002d-03, .1244342572214570d-1.1),
+( .4236746529272183d-04, .4472204080723670d-11),
.(-.9372997840256660d-03,-.1904932268853110d-11),
+(-. 6275701960924115d-03, .8402355092305780d-12),
4.( .184903886388677ld-03, .3068433182874190d-1.0),
+( .3795955396627962d-03,-.2415609997246610d-09),
+( .1370E78212350365d-03,-.7853612708782050d-09),
*(-.225687355157875ld-04,-.1790520486266400d-07)/

data co*120/(-.50000000000000fl0d 00, .8660254037844386d 00)/

data cos30 /( .8660254037844386d 00, .5000000000000000d Ou)/

data third/ .3333333333333333d 00/
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end

...........................
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CRAVER

This program calculates the partial wave series solution for the

backscattering form function of a tungsten carbide aphers. The program was

adapted from one written by R. C. Chiver at al. and referenced in the paper

given at the beginning of the program. The program results were checkad

against those of G. C. Gaunaurd et al. in Ref. 11 of Chapter 3 in the ka

region from I < ka < 70. The form function of other spheres can be

calculated by changing the material parameters.
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* CCCCCcCcCCccCCC
C C
c clay c
C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC~CCCCCC

C C
C THIS PROGRAM CALCULATES FORK FUNCTIONS USING PROGRAMS REFERENCED IN C
C R. C. CHVZRS AND L. W ANSON "CA6LCULATIONS OF THE BACXS CATTERING C
c AND RADIATioN FORCE FUNCTxONS oF SPHERICAL TARGETS FOR USE iN ULTRA- c
C SON'IC BEAM ASSESSMENT -WULTRASONTCS, JAN.- 1982,PP.25-34.THE PROGRAM C
C OUTPUTS THE KA OF THE SPHZE AND THE ABSOLUTE VA.LUE OF THE FORM C
C FUNCTION AT THAT X1A. FOUND THAT TIM PROGRAM REQUIRES HIGH PRECISION C
C ARXTHXZTIC OR IT WILL HAVC NUMSRICAL DIFFICULTIES.*THP. PROGRAM ALSO C
C BECOMES EXENSIVE. I YOU DESIRE TO GO TO VERY LARGE KA'S (>50). C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCaCC

DMN=SION PB(300) ,PC3(300) ,PSB(300) ,XAM(2000) ,FABS(2000)
REAL XAM
COMPLEX CYJIC

CCCCCCCCCCCCCCCaCCCCCeCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C SET XATERIAL PARAMETERS FOR THE SPHERE. C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCacccccccccccccccccccccccccccccCC

DATA RHO,VC,VS /7.7,5960.0,3240.0/
RH-1. 0/ CRHO*2. 0)
RATI-1483 .0/VC
RAT2-2L483. 0/VS
WRITE(6, 5) RsO, VC, VS

5 ?ORMAT(SX,5H RHO-,FE.2,4H C1-,18.1,4H C2-,FS..1)
MU.TE (6, 4)

4 YORMAT(I1X,39 KA,9X,3H /ff,')
XXAX-50

X-0
10 X-X+O.05

K-K+ 1
Tin1..25*X
Xl-RATI*X
X2-RAT2 *X
X2S-X2 **2
XSN-SIN (X)
XCS-COS (X)
CALL 3ESS(X,PB,T)
TERN-(XSN/X)/PB(l)
BN1-PB(2) *TZRM
CALL BESS(X1,PCB,T)
CBN1-PCB(2) /PCB(1)
CALL BESS(X2,PSB,T)
SmNO--xCS,'x
XSIGN-1. 0
$BET0. 0
SALPC0. 0
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CALL ST7AL(X,X1,X2,ALPN,BETI,CDN1,BNI,SNN1,RH,XSNX25iXCS)-
20 CONTINUE

CaN1-1. 0
CRI2-PCB(N+3)/PCB(N+2)

ARUI- (QaCBNI) -(X1*CBN2)
ADEN-((Q-1.O) *CBN1) -(Xl*cBN2)
DNU~in(((X2S/2.0)-Q*(Q-1.0))*C3ZI1)-(2.0*Xl*CBN2)
SDE.-1.0
SUN2-PUD (N43) /PS3(N+2)
SNUN..(2.0*9*(0+1) ) *SBN
EoZNm(((2.0*(Q*-2))-(X2S+2.0))iSaN1)+(2.0*6aN2*X2)
ZMMMm2.O*Q*(Q+1.O)*((.00*S3N1)+(X2*SVN2) )
FNI-X2S*fI* ((Al (/A.DEN) - (NUN/!DZN) )/ ((DNVN/ADEN)

A- (ZNUN/EN) )
30 CONT3NUE

ON2-PS(N43) 'TEPJ
GN1-( (TNI-Q) 'DN1)+(X*SK2)

SNN2-( ((2.0*Q)#1.0) *SNNI/X)-SNNO
31(1-( (FN1--Q) *SNN1()*(X*SNN2)
SNNO-SNNI
SNIl-6N12
OIN- (GN1**2) + (Mfl**2)
ALPNI-- (GN1**2) / DEl

ADDQ* (ALPN#ALPIN+(2. 0*&LIM*ALPN1) (2. 0*BETN*SETNI))
?AC-X3IGN*(2.0*Q-1.0)
SALPISALP+FAC*ALPN
SBETin83KT+flAC* 5T(
ALYN-ALPN2.
DKTNBETNIL
S`N-sUI4+ADD
IF ((ABS(ADD/SUM)).LT-l.0E-8) GOTO 90
T-0

xBZGN--XS:GM
GO TO 20

90 I-3+2.
17 (a.EQ.5) GO TO 1.00

XSZGlI--XBIGN
GO TO 20

2.00 ¶tP-(-4.0/(X**2))*SUN
FAcu-XSZGN*(2. 0*9+1.0)
SALP.SALP+FAC*ALPN1
SDET8UZLT+FAC*SETN1
CFAC-CIPLX (SBXT, -SALP) *(2. 0/X)

C C
C THE VARIABLE FTIN IS THE ABSOLTE VALIUM OF THE BACXSCATTERZNG C
C FORM FUNCTZON.THE VALtXE OF (KA) AND (TIN`F) AR.E OUTPU~T BELOW- C
C c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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* FZNF-CABS (CPAC)

rABS (X) inFZ)I
MU~TZ(6,40) KAX(X) ,PABS (K)

40 ?OmQT(SX,F10.2,2F14.4)
Z?(X.agLO.X)X) GO To go
=O TO 10

so CONTZ2IU
STOP

SUUROUTZN ST7AL(XX1,X2,ALPN,BETN,C3M1BN,1SNN1,PJXNX
2 S'S I, ICS)

FN--X2S*RII*hI'ZX/ ((X2S/2.0) -2. 0*TERX)
SINXlm-((XCS/(X**2) )+(XSN/X))
ON-(FN*(XSN/X) ) *(BNI*X)
IU(-(FN*XCS)/X) +(X*SNN1)

ALPN- (=~**2) /DZN
UN-- (GM*HN) /DDI

RZTURN

SO OT3TnM1 BESS(X,PA,T)
DnM~SZON PA(300)
L- 1FIX (T) + 15
PA(L.2)mO.O
PA(L+1)-mi. OE-30
00 10 I-ILL
K-(L+.) -i
R- LAAT (M)

10 CONTZIWZ
RETURN

-fa-


